COMBAT DAMAGE ASSESSMENT TEAM
A-10/GAU-8 LOW ANGLE FIRINGS
VERSUS
SIMULATED SOVIET TANK COMPANY (ARRAY 21)
AEROJET LOT NUMBER AJD 79A181-001
(30 OCTOBER 1979)
R.H.S. STOLFI
R.R. MCEACHIN
MAY 1980

Approved for public release; distribution unlimited.

Prepared for: A-10 System Program Office
Wright Patterson Air Force Base
Ohio 45433
NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund
Superintendent

Jack R. Borsting
Provost

The work reported herein was supported by the A-10 System Program Office, Wright Patterson Air Force Base, Ohio. The reproduction of all or part of this report is authorized.
Title: A-10/GAU-8 Low Angle Firing versus Simulated Soviet Tank Company (Array 21) (Aerojet Lot No. AJD 79A181-001) (30 October 1979)

Authors: R.H.S. Stolfi, R.R. McEachin

Performing Organization: Naval Postgraduate School, Monterey, California 93940

Controlling Office: A-10 System Program Office, Wright-Patterson Air Force Base, Ohio 45433

Report Date: May 1980

Pages: 1

Abstract: This report describes firings of the A-10/GAU-8 weapon system on 30 October 1979 against a Soviet tank company simulated by 10 combat loaded M-47 tanks. The pilots making the firing passes attacked at low altitude and used correspondingly low dive angles in order to simulate movement through a hostile air defense system. Ammunition used in the attacks comprised 30mm armor piercing incendiary (API) rounds, which proved Aerojet Lot Number AJD 79A181-001 to be effective damage agents against substantial targets.
areas of the U.S. MK 47 tanks used as targets. The pilots in nine successful firing passes (one pilot missed his intended target) fired a total of 289 rounds of which 98 impacted the targets. Of the projectiles impacting on targets, 22 achieved perforations of the armored envelope. Significant results include 3 tanks immobilized, of which 2 tanks were also silenced and six others damaged.
TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 1
 Attack Parameters .. 1
 Weapon Effects ... 1
 Damage Assessment ... 1
 Test Conditions ... 2
 Results .. 2

BACKGROUND .. 4

TEST PHILOSOPHY ... 4

SIMULATED GROUND COMBAT SITUATION 6

TARGET TANKS ... 7

TEST PERFORMANCE AND RESULTS 7

DAMAGE ASSESSMENT .. 15
 Tank Number 33 .. 16
 Tank Number 38 .. 18
 Tank Number 34 .. 20
 Tank Number 39 .. 22
 Tank Number 28 .. 24
 Tank Number 7 ... 25
 Tank Number 41 .. 27
 Tank Number 48 .. 29
 Tank Number 30 .. 31
 Tank Number 47 .. 33

SUMMARY AND CONCLUSIONS 35

APPENDIX A .. 37

APPENDIX B .. 42
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Russian T-62 Medium Tank</td>
<td>8</td>
</tr>
<tr>
<td>2.</td>
<td>U.S.A.F./Fairchild Republic A-10 Aircraft</td>
<td>10</td>
</tr>
<tr>
<td>3.</td>
<td>Fairchild A-10 Series Aircraft</td>
<td>11</td>
</tr>
<tr>
<td>4.</td>
<td>GAU-8/A-10 30mm Gun System</td>
<td>12</td>
</tr>
<tr>
<td>5.</td>
<td>30mm Armor Piercing Incendiary (API) Projectile</td>
<td>13</td>
</tr>
<tr>
<td>6.</td>
<td>Approximate Target Layout</td>
<td>14</td>
</tr>
<tr>
<td>7.</td>
<td>Locations of Impacts, Tank 33</td>
<td>17</td>
</tr>
<tr>
<td>8.</td>
<td>Locations of Impacts, Tank 36</td>
<td>19</td>
</tr>
<tr>
<td>9.</td>
<td>Locations of Impacts, Tank 34</td>
<td>21</td>
</tr>
<tr>
<td>10.</td>
<td>Locations of Impacts, Tank 39</td>
<td>23</td>
</tr>
<tr>
<td>11.</td>
<td>Locations of Impacts, Tank 7</td>
<td>26</td>
</tr>
<tr>
<td>12.</td>
<td>Locations of Impacts, Tank 41</td>
<td>28</td>
</tr>
<tr>
<td>13.</td>
<td>Locations of Impacts, Tank 48</td>
<td>30</td>
</tr>
<tr>
<td>14.</td>
<td>Locations of Impacts, Tank 30</td>
<td>32</td>
</tr>
<tr>
<td>15.</td>
<td>Locations of Impacts, Tank 47</td>
<td>34</td>
</tr>
<tr>
<td>A-1.</td>
<td>Array 21 Attack Aspect Summary</td>
<td>41</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Tables

I. A-10 Aircraft in Low Angle Gun Attack versus Simulated Soviet Tank Company

II. Comparison of Ideal & Practical Test Situations

A-I. Array 21 Results Summary

A-II. Array 21 Perforation Location Summary

A-III. Array 21 Aircraft Attack Parameters
COMBAT DAMAGE ASSESSMENT COMMITTEE (CDAC) EXECUTIVE SUMMARY

Under the technical direction of the Combat Damage Assessment Committee (CDAC), the Combat Damage Assessment Team (CDAT) conducted firings of the A-10/GAU-8 weapon system against an array of 10 tanks simulating a Soviet tank company deployed for an attack. The CDAT used M-47 tanks stowed with main gun ammunition, diesel fuel, lubricating oil, and crew mannikins to simulate the Soviet tanks. The pilots of the A-10 aircraft used in the firings conducted firings at low altitudes and low dive angles which simulated attack below the altitude of effective engagement for opposing air defense networks employing acquisition and fire control radar. The purpose of the test was to evaluate the effects of the 30mm API anti-tank ammunition (Aerojet lot number AJD 79A181-001) of the GAU-8 gun under challenging conditions of engagement for the A-10/GAU-8 system against realistically simulated Soviet main battle tanks.

The CDAC assessed the results of the low angle cannon firings of the A-10 aircraft against the simulated Soviet tank company as follows:

1. Attack Parameters: The pilots of the A-10 aircraft attacked the simulated Soviet tank company for 7 minutes 11 seconds at low altitude and dive angles. The pilots made a total of 13 passes, each at a primary tank target. The GAU-8 cannon has a cockpit selectable nominal fire rate of either 4200 rounds per minute or 2100 rounds per minute. The system was set to fire at the 2100 round per minute rate during this test. The passes resulted in projectile impacts on 9 primary target tanks. The attack open-fire dive angles averaged 1.3 degrees for the ten passes against the targets. Open-fire slant range averaged 2731 feet. The pilots fired 289 rounds in thirteen bursts averaging 22 rounds and 0.69 seconds each.

2. Weapons Effects: The A-10/GAU-8 weapon system achieved 98 impacts on the 10 tank targets. The ratio of direct impacts to total rounds fired was a substantial 0.30. Ricochet impacts are also capable of causing damage. If the ricochet impacts are added to the direct impacts, the overall ratio of impacts to rounds fired becomes 0.34. The weapon system achieved 22 perforations of the armored envelopes of the tanks with a ratio of perforations to total impacts of 0.22. The ratio of perforations to direct impacts is 0.26. Many projectiles, which did not perforate armor, severely damaged exterior track and suspension components of the tanks as well as gun tubes.

3. Damage Assessment: The attacking A-10/GAU-8 weapon system inflicted no catastrophic kills on tanks in the company.
array. Three tanks were immobilized, of which two were deprived of the use of main armament and the other seriously degraded in firepower. Of the remaining tanks three were seriously degraded in mobility and firepower, three suffered minor or insignificant damage, and one was not hit. The effective loss of six tanks precluded continued or sustained offensive combat by the simulated Soviet tank company.

4. Test Conditions: The target tanks were sited in open, flat desert terrain with no cover and little concealment. Aerial weather conditions were ones of unlimited ceiling and visibility. Shortly after the initial firing, clouds of white dust from projectile impacts were evident. Such conditions effectively simulated the actual obscuration which would have been presented to the pilots in combat.

5. Results: The overall results of the test are summarized in Table I.
TABLE I. A-10 Aircraft in Low Angle Gun Attack versus Simulated Soviet Tank Company (30 October 1979)

<table>
<thead>
<tr>
<th>Tank No.</th>
<th>A-10 Primary Pass</th>
<th>APPROACH</th>
<th>ATTACK</th>
<th>GUN EFFECTS</th>
<th>DAMAGE</th>
<th>Tank Immobilized?</th>
<th>Tank Aspect (Degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Speed (FPS)</td>
<td>Alt (Feet)</td>
<td>Open Fire Range (Feet)</td>
<td>Dive Angle (Degrees)</td>
<td>Rounds (Each)</td>
<td>Impacts (Each)</td>
</tr>
<tr>
<td>33</td>
<td>1/1</td>
<td>589</td>
<td>463</td>
<td>2344</td>
<td>-3.0</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>33</td>
<td>1/6</td>
<td>557</td>
<td>413</td>
<td>2120</td>
<td>-2.0</td>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td>33</td>
<td>2/6</td>
<td>589</td>
<td>383</td>
<td>3528</td>
<td>0</td>
<td>31</td>
<td>17</td>
</tr>
<tr>
<td>38</td>
<td>2/1</td>
<td>584</td>
<td>363</td>
<td>3118</td>
<td>1</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>34</td>
<td>1/2</td>
<td>564</td>
<td>383</td>
<td>2334</td>
<td>-1.0</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>34</td>
<td>1/7</td>
<td>552</td>
<td>433</td>
<td>*</td>
<td>-3.0</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>39</td>
<td>2/2</td>
<td>574</td>
<td>363</td>
<td>3105</td>
<td>0</td>
<td>22</td>
<td>16</td>
</tr>
<tr>
<td>26</td>
<td>1/3</td>
<td>573</td>
<td>433</td>
<td>2272</td>
<td>-3.0</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>2/3</td>
<td>579</td>
<td>363</td>
<td>3255</td>
<td>0</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>41</td>
<td>1/4</td>
<td>576</td>
<td>463</td>
<td>2272</td>
<td>-3.0</td>
<td>25</td>
<td>21</td>
</tr>
<tr>
<td>48</td>
<td>2/4</td>
<td>574</td>
<td>363</td>
<td>3392</td>
<td>0</td>
<td>31</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>1/5</td>
<td>581</td>
<td>413</td>
<td>2487</td>
<td>-2.0</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>47</td>
<td>2/5</td>
<td>573</td>
<td>363</td>
<td>3460</td>
<td>0</td>
<td>29</td>
<td>3</td>
</tr>
</tbody>
</table>

Total:** ***
Average:** ***

<table>
<thead>
<tr>
<th>Speed (FPS)</th>
<th>Alt (Feet)</th>
<th>Open Fire Range (Feet)</th>
<th>Dive Angle (Degrees)</th>
<th>Rounds (Each)</th>
<th>Impacts (Each)</th>
<th>Perfs (Each)</th>
<th>M %</th>
<th>F %</th>
<th>K %</th>
</tr>
</thead>
<tbody>
<tr>
<td>574</td>
<td>400</td>
<td>2731</td>
<td>-1.3</td>
<td>22.2</td>
<td>7.5</td>
<td>1.7</td>
<td>2 M- and F-Kills</td>
<td>3 M-Kill, High % F degradation</td>
<td></td>
</tr>
</tbody>
</table>

*Position uncertain
**Interdiction type M-Kill after 3 to 5 kilometers of movement.
***Based on HUD film
Note: 1/1 means pilot 1, pass 1; 1/2 means pilot 1, pass 2, etc.
Since February, 1978, the Armament Directorate, A-10 System Program Office, Wright Patterson Air Force Base, Ohio, has conducted firing tests using the A-10/GAU-8 system in low-level, air-to-ground engagements of armored targets. The tests have been conducted within the framework of the GAU-8 30mm ammunition Lot Acceptance Verification Program (LAVP) - Airborne. The LAVP has the following objectives which apply to the present tests:

A. To evaluate the performance of existing production lots of GAU-8 ammunition when fired from the air under operational conditions.

B. To evaluate the lethality of GAU-8 ammunition against armored targets when fired at low level from A-10 aircraft using operational tactics.

To conduct the LAVP program, the Armament Directorate has cooperated with Headquarters, Tactical Air Command, Langley AFB, Virginia and, in turn, with the Tactical Fighter Weapons Center, Nellis AFB, Nevada. Within the framework of that cooperation, the Armament Directorate has set up a Combat Damage Assessment Team (CDAT) to plan and execute the firing tests and evaluate the results. The CDAT functions under the direction of a Combat Damage Assessment Committee (CDAC) which has prepared this report of the firing test of 30 October, 1979.

TEST PHILOSOPHY

To generate realistic data, the CDAC determined to use a highly empirical technique of destructive testing of actual tank targets. Tests have involved firings at individual tanks in November, 1977 and February - March, 1978, and, more recently, arrays of vehicles in tactical formations. The experimental setup for the firings of 30 October, 1979 involved the use of a multitarget, tactically arrayed tank formation for attack by the A-10/GAU-8 system. The CDAT elected to simulate a Soviet tank company, as organized within a tank division, as the target array for two attacking A-10 aircraft. As few constraints as possible were placed on the attacking pilots in an attempt to develop as much realism as possible. Table II shows the test factors which would have been ideal in the test of 30 October, 1979 and the practical setup which was achieved.
TABLE II. Comparison of Ideal & Practical Test Situations

<table>
<thead>
<tr>
<th>Ideal Test Parameters</th>
<th>Practical Test Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Air Attack Realism</td>
<td>1. Air Attack Realism</td>
</tr>
<tr>
<td>a. Actual A-10/GAU-3</td>
<td>a. Actual A-10/GAU-3</td>
</tr>
<tr>
<td>b. 30mm API</td>
<td>b. 30mm API</td>
</tr>
<tr>
<td>c. European Weather & Terrain</td>
<td>c. Nevada Weather & Desert Terrain</td>
</tr>
<tr>
<td>d. Optimum open-fire ranges (200u ft)</td>
<td>d. Average open-fire range - 2731 feet</td>
</tr>
<tr>
<td>e. Low Altitude attack angle (< 6 degrees)</td>
<td>e. Low Altitude attack angle (< 6 degrees)</td>
</tr>
<tr>
<td>2. Air Defense Realism</td>
<td>2. Air Defense Realism</td>
</tr>
<tr>
<td>a. Automatic cannon firing at aircraft</td>
<td>a. Low-altitude, low-angle, minimum-exposure attacks versus assumed AD system</td>
</tr>
<tr>
<td>b. Missile systems firing at aircraft</td>
<td>b. Low-altitude, low-angle, minimum-exposure attacks versus assumed AD system</td>
</tr>
<tr>
<td>c. Small arms firing at aircraft</td>
<td>c. Low-altitude, low-angle, minimum-exposure attacks versus assumed AD system</td>
</tr>
<tr>
<td>d. AD suppression by aircraft</td>
<td>d. No suppression simulation in test</td>
</tr>
<tr>
<td>3. Threat Targets and Doctrine</td>
<td>3. Threat Targets and Doctrine</td>
</tr>
<tr>
<td>a. T62/T64/T72 high fidelity targets</td>
<td>a. Simulated Soviet Tanks</td>
</tr>
<tr>
<td>b. Stowed combat loads (in T62/T64/T72)</td>
<td>b. Stowed combat loads (in US M-47)</td>
</tr>
<tr>
<td>c. Realistic crew station postures</td>
<td>c. Wooden crew manikins</td>
</tr>
<tr>
<td>d. Dynamic combat formation</td>
<td>d. Static combat formation</td>
</tr>
<tr>
<td>e. Maneuvering evasive targets</td>
<td>e. Stationary targets</td>
</tr>
</tbody>
</table>
SIMULATED GROUND COMBAT SITUATION

The firing test of 30 October, 1979 simulated the attack by two A-10 aircraft on a Soviet tank company. The CDAC hypothesized the Soviet tank company to be the lead march security detachment for its battalion, which in turn, is the advance guard of a larger mobile formation. The lead detachment operates approximately five kilometers in front of the Soviet battalion column. The mission of the advance company is to ensure the uninterrupted advance of the battalion and provide security against attack. Upon meeting heavy resistance, the company deploys into an appropriate combat formation to reduce the resistance, or form a base of fire for offensive action by the remainder of the battalion.

A Soviet tank company, would probably have other units attached to it for its support. Attached units might include any one or all of the following elements: (1) motorized rifle platoon; (2) engineer detachment; (3) chemical defense specialists; (4) 122mm howitzer battery; (5) air defense element. The lead detachment simulated in the firing test consisted of tanks alone. The pure tank formation was arranged in column formation, simulating high speed travel along an axis of advance. The tanks used in the firing test were US M-47 tanks, largely intact, containing crew manikins, and stowed with ammunition, fuel, and oil. The tanks were not maneuvered during the firing test and the formation remained essentially a snapshot of the company at a single point in time.
TARGET TANKS

The most effective targets available in sufficient numbers to simulate Soviet T-55 and T-62 (Figure 1) tanks were the US M-47 tanks. Both of the Soviet tank models are similar in armor protection to the M-47. With the appropriate purging of the gasoline fuel system of the US tanks, the CDAT managed to field a target similar in survivability to the T-55 and T-62 tanks from the viewpoint of ignitable internal material. Few data are available on the Soviet T-64 and later model tanks from the viewpoints of armor protection and the arrangement of internal components. The decision was made, accordingly, to simulate the earlier model Soviet tanks with the readily available US tanks.

The M-47 tanks used for targets were in excellent condition from the viewpoint of damage assessment. The exterior components were complete and the tanks have proven to be effective targets for the collection of exterior mobility damage. Interior components were less complete in the target tanks. All of the most essential items were present, e.g., main gun, engine, transmission, fuel tanks, ammunition racks, etc., but other items such as oil coolers, range finders, vision devices, and radios, have not been present in all tanks.

The most sensitive internal items from the viewpoint of catastrophic kills and high percentage M and F kills are the following, which were placed in the test tanks as noted:

<table>
<thead>
<tr>
<th>Generic Sensitive Item</th>
<th>Test Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ammunition</td>
<td>US Cartridge, 90-mm TP-T</td>
</tr>
<tr>
<td>2. Fuel</td>
<td>Number 2 Diesel</td>
</tr>
<tr>
<td>3. Oil</td>
<td>Oil in Engine, Transmission and Drive Components.</td>
</tr>
<tr>
<td>4. Personnel</td>
<td>Articulated Plywood Manikins</td>
</tr>
</tbody>
</table>

The tanks were static during the test and their engines were not running, with the result that the fuel and oil were much cooler and more inert than would have been the case with a moving tank or a static vehicle with its engine running. The kill ratio achieved in the firing test of 30 October, 1979, therefore, is probably conservative from the viewpoint of fires resulting from ignited fuel and oil.

TEST PERFORMANCE AND RESULTS

Conduct of the test consisted of bringing together the ammunition, gun, aircraft, pilots, and combat arrayed and loaded tanks into a several minutes simulation of combat. In essence, the
FIGURE 1. Russian T62 Medium Tank
decisive elements which were fed into the test immediately prior to the firing were the following:

1. Aerojet 30mm API ammunition
 Lot AJD 79A181-001.
3. Fairchild Republic A-10 attack aircraft.
4. Fighter Pilots, 66th FWS, Nellis AFB.
5. US Designed M-47 main battle tanks, combat loaded.

The combat simulation itself comprised the aerial fire and maneuver of the attacking A-10 aircraft. A realistic way of presenting the combat simulation is to outline the sequence of pertinent events in each firing pass. These events and the pertinent data which the CDAT attempted to collect, in order to reconstruct the simulated combat firing of 30 October, 1979, were as follows:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Event</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Aircraft Approach</td>
<td>Speed, Altitude</td>
</tr>
<tr>
<td>2.</td>
<td>Aircraft Attack</td>
<td>Open-Fire Range, Dive Angle</td>
</tr>
<tr>
<td>3.</td>
<td>Aircraft Attack</td>
<td>Burst Time, Rounds Fired</td>
</tr>
<tr>
<td>4.</td>
<td>Aircraft Attack</td>
<td>Cease-Fire Range, Dive Angle</td>
</tr>
<tr>
<td>5.</td>
<td>Gun Effects, (Accuracy)</td>
<td>Impacts on Tanks</td>
</tr>
<tr>
<td>6.</td>
<td>Gun Effects, (Lethality)</td>
<td>Perforations through armor</td>
</tr>
<tr>
<td>7.</td>
<td>Tank Damage</td>
<td>Catastrophic (K-Kill), Mobility (M-Kill), and Firepower (F-Kill) Kills</td>
</tr>
</tbody>
</table>

The data noted immediately above were collected through the combined efforts of the CDAT and range personnel at Nellis AFB. Aerojet Ordnance Manufacturing Company personnel provided the industrial efforts required to repair, refurbish, and field the tank targets. The CDAT applied various systematic research techniques used to describe weapon effects and combat damage. The most basic materiel used in the test, i.e., the aircraft, gun, and projectile are illustrated in Figures 2, 3, 4, and 5. The targets were arrayed in the tactical formation of a Soviet tank company as shown in Figure 6.

The pilots making the attack flew from the base area in a two-ship, mutually supporting element and employed operational tactics immediately before and during the firing passes. The pilots approached the target area at low altitude and simulated target acquisition with the help of a forward air controller. The pilots then proceeded to attack the entire tank company and acquired targets at low altitudes and dive angles, simulating operation below the altitudes for effective acquisition and engagement by opposing air defense missile and gun systems.
FIGURE 3. Fairchild A-10 Series Aircraft.
FIGURE 5. 30mm Armor Piercing Incendiary (API) Projectile.
FIGURE 6. Approximate Target Layout.
DAMAGE ASSESSMENT

The damage assessment conducted by the CDAT is presented on the following pages. Appendix A contains graphical and tabular information relative to the mission in general plus summaries of the damage assessment for easy reference.

Terms used in the damage assessment summaries are defined in Appendix B.

Impacts on the targets were arbitrarily numbered for identification purposes. The impacts were numbered sequentially, first at the turret level, then at the hull level. If additional impacts were discovered during the combat damage assessment (as was sometimes the case) they were given the next sequential number, i.e., no attempt was made to "correct" the sequence. THE READER IS CAUTIONED THAT THIS NUMBERING SYSTEM HAS NO RELATIONSHIP WHATSOEVER TO THE ARRIVAL SEQUENCE OF PROJECTILES ON THE TARGET OR TO THE PORTION OF THE BURST IMPACTING THE TARGET.
TARGET TANK DAMAGE SUMMARY

M-47 Tank Number 33

1. Description:

The attacking A-10 aircraft achieved impacts on the tank from an attack aspect of 090 degrees (right side) during three firing passes at low altitude and low dive angle. The A-10 expended 60 rounds during three firing passes. The first two passes were observed to have resulted in misses.

2. Kill Assessment:

100% M-Kill and 100% F-Kill resulting from the following observed effects (Figure 7):

 a. Perforations : 5
 b. Significant Impacts : 3
 c. Insignificant Impacts: 9

 TOTAL IMPACTS : 17

3. Rationale for Kill Assessment:

a. M-Kill: A 100% M-Kill was attributed to impact 13 which perforated the hull armor into the engine compartment penetrating one valve cover (destroying the oil cooler, had it been installed), and to impact 3 which perforated the hull armor into the drivers compartment causing casualties to the driver and assistant driver. Perforation 12 into the engine compartment caused indeterminate damage. Impacts 15 and 16 destroyed two track shoes, making a minor contribution to the kill.

b. F-Kill: A 100% F-Kill was attributed to impact 5 which hit in the turret ring with a high probability of jamming the turret (which had been jammed during a previous test) and to impact 6 which perforated the turret causing a loader casualty. One other perforation of the hull into the ammunition stowage area caused indeterminate damage, since the turret could not be traversed for access.
NOTE: Impacts 14, 15, and 16 not depicted.

FIGURE 7. Locations of Impacts, Tank 33.
TARGET TANK DAMAGE SUMMARY

M-47 Tank Number 38

1. Description

The attacking A-10 aircraft achieved impacts on the tank from an attack aspect of 093 degrees (right side) during one firing pass at low altitude and low dive angle. The A-10 expended 25 rounds in the firing pass.

2. Kill Assessment:

65% M-Kill and 95% F-Kill resulting from the following observed effects (Figure 8):

a. Perforations : 2
b. Significant Impacts : 1
c. Insignificant Impacts: 9

TOTAL IMPACTS : 12

3. Rationale for Kill Assessment:

a. M-Kill: A 65% M-Kill was assessed based solely on crew casualties. Mobility was not impaired by mechanical damage and the tank could continue its mission after replacement of three crewmen.

b. F-Kill: A 95% F-Kill was assessed based solely on crew casualties from impacts 6 and 7 which perforated the turret and caused casualties to the commander, gunner and loader. The damage to the loader manikin was judged not severe enough to warrant his evacuation. Impact 8 which did not completely penetrate the turret armor may have contributed to the casualties through back-spalling.
Legend:

- Perforation
- Hit
- Ricochet Off Ground

FIGURE 8. Location of Impacts, Tank 38.
TARGET TANK DAMAGE SUMMARY

M-47 Tank Number 34

1. **Description:**

The attacking A-10 aircraft achieved impacts on the tank from an attack aspect of 089 degrees (right side) during two firing passes at low altitude and low dive angle. The A-10 expended 29 rounds during the two firing passes. The first pass was observed to have resulted in a miss.

2. **Kill Assessment:**

100% M-Kill and 100% F-Kill resulting from the following observed effects (Figure 9):

- a. Perforations : 7
- b. Significant Impacts : 2
- c. Insignificant Impacts: 5

TOTAL IMPACTS : 14

3. **Rationale for Kill Assessment:**

a. **M-Kill:** A 100% M-Kill was attributed to impacts 13 and 14 which perforated the right hull and penetrated the fuel tank. Contributing to the kill were impacts 8 and 10 which perforated the right hull and caused casualties to the driver and assistant driver, and impacts 11 and 12 which damaged the bearings and seal of the right #2 roadwheel hub.

b. **F-Kill:** A 100% F-Kill was assessed based on impacts 2 and 3 which perforated the right turret armor and caused casualties to the commander, gunner, and loader. The driver and assistant driver casualties, caused by impacts 8 and 10, contributed to the kill. One other perforation (impact 4) damaged an inverter and the ventilation blower, but did not contribute to the kill.
NOTE: Impacts 1, 5, and 6 not depicted (insignificant damage).

FIGURE 9. Locations of Impacts, Tank 34.
TARGET TANK DAMAGE SUMMARY

M-47 Tank Number 39

1. Description:

The attacking A-10 aircraft achieved impacts on the tank from an attack aspect of 090 degrees (right side) during one firing pass at low altitude and low dive angle. The A-10 expended 22 rounds during the firing pass.

2. Kill Assessment:

No degradation in mobility or firepower (Figure 10):

a. Perforations : 3
b. Significant Impacts : 0
c. Insignificant Impacts: 13

TOTAL IMPACTS : 16

3. Rationale for Kill Assessment:

Three perforations into the engine compartment (impacts 11, 12, and 16) failed to penetrate the fuel tank or damage any mobility or firepower related components.
FIGURE 10. Locations of Impacts, Tank 39.

Legend:
- Perforation
- Hit
- Ricochet Off Ground
TARGET TANK DAMAGE SUMMARY

M-47 TANK NUMBER 28

1. **Description:**

 The attacking A-10 aircraft failed to achieve any impacts on the tank in the burst of 20 projectiles which were fired toward the right side of the tank.

2. **Kill Assessment:**

 Not Applicable.

 TOTAL IMPACTS: 0

3. **Rationale for Kill Assessment:**

 Not Applicable.
TARGET TANK DAMAGE SUMMARY

M-47 Tank Number 7

1. Description:

 The attacking A-10 aircraft achieved impacts on the tank during one firing pass on the right side at low altitude and low dive angle. The A-10 expended 24 rounds during the firing pass.

2. Kill Assessment:

 Less than 5% M-Kill resulting from the following observed effects (Figure 11):

 a. Perforations : 0
 b. Significant Impacts : 2
 c. Insignificant Impacts: 5

 TOTAL IMPACTS : 7

3. Rationale for Kill Assessment:

 Impact 4 destroyed one right track center guide; impact 7 destroyed the right track inside end connector.
TARGET TANK DAMAGE SUMMARY

M-47 Tank Number 41

1. Description:

The attacking A-10 aircraft achieved impacts on the tank during one firing pass from an attack aspect angle of 085 degrees at low altitude and low dive angle. The A-10 expended 25 rounds during the firing pass.

2. Kill Assessment:

100% interdiction type M-Kill and 95% F-Kill resulting from the following observed effects (Figure 12):

a. Perforations : 3
b. Significant Impacts : 5
c. Insignificant Impacts: 13

TOTAL IMPACTS : 21

3. Rationale for Kill Assessment:

a. M-Kills: A 100% interdiction type M-Kill after 3-5 km movement was assessed attributed to cumulative damage from impact 17 which perforated the right hull armor, severed one spark plug wire (immediate loss of power) and penetrated one valve cover (loss of engine oil), and from impact 14 which damaged the right #4 roadwheel causing an oil leak. Minor damage to the track and suspension system from 4 other impacts contributed to the kill.

b. F-Kill: A 95% F-Kill was attributed to the results of impacts 7 and 8 which perforated the right turret armor causing casualties to the commander, gunner, and loader.
TARGET TANK DAMAGE SUMMARY

M-47 Tank Number 48

1. **Description:**

 The attacking A-10 aircraft achieved impacts on the tank from an attack aspect of 085 degrees (right side) during one firing pass at low altitude and low dive angle. The A-10 expended 31 rounds during the firing pass.

2. **Kill Assessment:**

 90% M-Kill and 95% F-Kill based on the following observed effects (Figure 13):

 a. Perforations : 1
 b. Significant Impacts : 1
 c. Insignificant Impacts: 1

 TOTAL IMPACTS : 3

3. **Rationale for Kill Assessment:**

 a. M-Kill: A 90% immediate M-Kill was assessed attributable solely to crew casualties. Damage to the right #1 track support roller hub from impact 2 was judged as probably sufficient to cause an interdiction type mobility kill during continued movement.

 b. F-Kill: A 95% F-Kill was assessed based solely on crew casualties from impact 1 which perforated the right turret armor and caused casualties to the commander, gunner, and loader.
TARGET TANK DAMAGE SUMMARY
M-47 Tank Number 30

1. **Description:**

 The attacking A-10 aircraft achieved impacts on the tank from an attack aspect angle of 0°5 degrees (right side) during one firing pass at low altitude and low dive angle. The A-10 expended 24 rounds during the firing pass.

2. **Kill Assessment:**

 No degradation in mobility or firepower (Figure 14):

 a. Perforations : 0
 b. Significant Impacts : 0
 c. Insignificant Impacts: 5

 TOTAL IMPACTS : 5

3. **Rationale for Kill Assessment:**

 No damage was observed which was substantial enough to cause a degradation of either firepower or mobility.
TARGET TANK DAMAGE SUMMARY

M-47 TANK NUMBER 47

1. Description:

The attacking A-10 aircraft achieved impacts on the tank from an attack aspect of 080 degrees during one pass initiated at low altitude and low dive angle. The A-10 expended 29 rounds during the firing pass.

2. Kill Assessment:

55% M-Kill and 65% F-Kill due to the following observed effects (Figure 15):

a. Perforations : 1
b. Significant Impacts : 0
c. Insignificant Impacts: 2

TOTAL IMPACTS : 3

3. Rationale for Kill Assessment:

a. M-Kill: A 55% M-Kill was assessed based solely on crew casualties. Mobility was not impaired by mechanical damage and the tank could continue its mission after replacement of two crewmen.

b. F-Kill: A 65% F-Kill was assessed based solely on crew casualties from impact 2 which perforated the right turret and caused casualties to the commander, gunner, and loader. The damage to the commander manikin was judged not severe enough to warrant his evacuation.
Legend:
- Perforation
- Hit
- Ricochet Off Ground

FIGURE 15. Locations of Impacts, Tank 47.
On 30 October, 1979, at Nellis AFB, Nevada, the Combat Damage Assessment Team (CDAT) conducted firings of the A-10/GAU-8 weapon system against an array of 10 tanks simulating a Soviet tank company deployed for an attack. The purpose of the firing test was to evaluate the effects of Aerojet lot number AJD 79A181-001 30mm API antitank ammunition for the GAU-8 gun under challenging conditions of engagement for the A-10/GAU-8 system against realistically simulated Soviet tank formations. The CDAT used M-47 tanks stowed with main gun ammunition, diesel fuel, lubricating oil, and crew manikins to simulate the Soviet tanks. The pilots of the two A-10 aircraft used in the firings conducted their attacks at low altitudes and low dive angles which simulated attack below the altitude of the effective engagement for opposing air defense systems using acquisition and fire control radar.

The firing test can be summarized in terms of the following data which were collected and/or extracted from the firings:

Aircraft Parameters

1. Open-fire Speed (average)---------- 574 feet/sec
2. Dive Angle (average)-------------- 1.3 degrees
3. Open Fire Slant Range (average) -- 2731 feet
4. Burst Length/Rounds (averages)---- .69 sec/22 rds.
5. Number Passes (primary)---------- 13
6. Target Aspects (predominantly)---- Right Side

Weapon Effects

1. Rounds Fired------------ 289
2. Impacts---------------- 98
3. Ricochets (off grnd)--- 12
4. Direct Impacts---------- 86
5. Perforation------------- 22

Target Damage

1. K-Kills----------- 0
2. M+F-Kills-------- 2
3. M-Kill---------- 1
4. F-Kill---------- 0
5. Hi% M+F-Kills- 3
6. Negligible----- 3

These data and the more detailed base from which they were extracted can be arranged into measures of effectiveness for the A-10/GAU-8 system under conditions similar to those in the firing test, i.e., empirical combat simulation. The following values of effectiveness are based on the firing test on 30 October, 1979:
Measures of Effectiveness

Accuracy Related Ratio:

<table>
<thead>
<tr>
<th>Total Impacts</th>
<th>Rounds Fired</th>
<th>= 0.34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Impacts</td>
<td>Rounds Fired</td>
<td>= 0.30</td>
</tr>
</tbody>
</table>

Lethality Related Ratio:

<table>
<thead>
<tr>
<th>Perforations</th>
<th>Total Impacts</th>
<th>= 0.22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perforations</td>
<td>Direct Impacts</td>
<td>= 0.26</td>
</tr>
</tbody>
</table>

Weapon System Effectiveness Ratio:

<table>
<thead>
<tr>
<th>Tank Immobilized</th>
<th>Passes</th>
<th>= 0.23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanks K-Killed</td>
<td>Passes</td>
<td>= 0.00</td>
</tr>
</tbody>
</table>

The ten target tanks were attacked predominately from the right side and suffered the severe damage shown in Table I and Table A-I.

The data and measures summarized above, and the other data contained in this report, support several conclusions:

2. The weapon system in low level attacks can perforate specifically the side surfaces of the hulls and turrets of M-47 and similarly protected main battle tanks.

3. The weapon system is an effective killing agent against the side surfaces of M-47 and similar tanks when firing moderate length bursts of 0.38-0.94 seconds, containing 11-31 rounds.

4. From the viewpoint of GAU-8 30mm API ammunition effects and resulting damage to combat stowed main battle tanks, the tactic of low level attack in this firing test was shown to be a successful one.
APPENDIX A

Graphical and Summary Information

Table A-I contains a summary of the results achieved against array 21 on 30 October, 1979. Table A-II relates the assessment of damages in Table A-I to locations of perforations. Table A-III summarizes the Aircraft Attack Parameters Altitude, Attitude, Airspeed, Firing Slant Range and Burst length for each pass on each target. Figure A-1 relates aircraft attack aspect by tank number to burst length in feet.
TABLE A-I. Array 21 Results Summary
(30 October 1979)

<table>
<thead>
<tr>
<th>Target Tank No.</th>
<th>Damage Assessment*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M%) (F%) (K%)</td>
</tr>
<tr>
<td>33</td>
<td>100 100 -</td>
</tr>
<tr>
<td>38</td>
<td>65 95 -</td>
</tr>
<tr>
<td>34</td>
<td>100 100 -</td>
</tr>
<tr>
<td>39</td>
<td>- - -</td>
</tr>
<tr>
<td>28</td>
<td>MISSED</td>
</tr>
<tr>
<td>7</td>
<td><5 - -</td>
</tr>
<tr>
<td>41</td>
<td>100 95 -</td>
</tr>
<tr>
<td>48</td>
<td>90 95 -</td>
</tr>
<tr>
<td>30</td>
<td>- - -</td>
</tr>
<tr>
<td>47</td>
<td>55 65 -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>All Target Impacts</th>
<th>Direct Impacts</th>
<th>Rounds Fired</th>
<th>Total Perforations</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>17</td>
<td>17</td>
<td>60</td>
<td>5</td>
</tr>
<tr>
<td>38</td>
<td>12</td>
<td>12</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>34</td>
<td>14</td>
<td>14</td>
<td>29</td>
<td>7</td>
</tr>
<tr>
<td>39</td>
<td>16</td>
<td>8</td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>5</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>21</td>
<td>19</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>48</td>
<td>3</td>
<td>3</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td>5</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>3</td>
<td>3</td>
<td>29</td>
<td>1</td>
</tr>
</tbody>
</table>

| TOTALS: | 98 | 86 | 289 | 22 |

*K = Catastrophic Kill; M = Mobility Kill; F = Firepower Kill
TABLE A-II. Array 21 Perforation Location Summary
(30 October 1979)

<table>
<thead>
<tr>
<th>Target Tank</th>
<th>Damage Assessment*</th>
<th>Turret Perforations (Fighting Compt)</th>
<th>Hull Perforations</th>
<th>Total Perforations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M%) (F%) (K%)</td>
<td></td>
<td>Fighting Compt</td>
<td>Engine Compt</td>
</tr>
<tr>
<td>33</td>
<td>100 100 -</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>38</td>
<td>65 95 -</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>100 100 -</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>39</td>
<td>- - -</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>MISSED</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td><5 - -</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>100 95 -</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>90 95 -</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>- - -</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>55 65 -</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TOTALS: 10 1 3 8 22

*K = Catastrophic Kill; M = Mobility Kill; F = Firepower Kill
TABLE A-III. Array 21 Aircraft Attack Parameters
(30 October 1979)

<table>
<thead>
<tr>
<th>Acft Pass *</th>
<th>Tank No.</th>
<th>Open Fire Slant Rng (feet)</th>
<th>Dive Angle Open/Close (degrees)</th>
<th>Altitude (feet)</th>
<th>Velocity Open/Close (ft/sec)</th>
<th>Burst Length (seconds)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>33</td>
<td>2344</td>
<td>-3/-2</td>
<td>463</td>
<td>584/593</td>
<td>.38</td>
<td>HUD</td>
</tr>
<tr>
<td>2/1</td>
<td>38</td>
<td>3118</td>
<td>0/0</td>
<td>363</td>
<td>584/579</td>
<td>.77</td>
<td>HUD</td>
</tr>
<tr>
<td>1/2</td>
<td>34</td>
<td>2334</td>
<td>-1/-1</td>
<td>383</td>
<td>564/564</td>
<td>.38</td>
<td>HUD</td>
</tr>
<tr>
<td>2/2</td>
<td>39</td>
<td>3105</td>
<td>0/0</td>
<td>363</td>
<td>574/571</td>
<td>.69</td>
<td>HUD</td>
</tr>
<tr>
<td>1/3</td>
<td>28</td>
<td>2272</td>
<td>-3/-3</td>
<td>433</td>
<td>573/576</td>
<td>.63</td>
<td>HUD</td>
</tr>
<tr>
<td>2/3</td>
<td>7</td>
<td>3255</td>
<td>0/0</td>
<td>363</td>
<td>579/576</td>
<td>.75</td>
<td>HUD</td>
</tr>
<tr>
<td>1/4</td>
<td>41</td>
<td>2272</td>
<td>-3/-3</td>
<td>463</td>
<td>576/576</td>
<td>.77</td>
<td>HUD</td>
</tr>
<tr>
<td>2/4</td>
<td>48</td>
<td>3392</td>
<td>0/0</td>
<td>363</td>
<td>574/576</td>
<td>.94</td>
<td>HUD</td>
</tr>
<tr>
<td>1/5</td>
<td>30</td>
<td>2487</td>
<td>-2/-2</td>
<td>413</td>
<td>581/576</td>
<td>.73</td>
<td>HUD</td>
</tr>
<tr>
<td>2/5</td>
<td>47</td>
<td>3460</td>
<td>0/0</td>
<td>363</td>
<td>573/576</td>
<td>.88</td>
<td>HUD</td>
</tr>
<tr>
<td>1/6</td>
<td>33</td>
<td>2120</td>
<td>-2/-3</td>
<td>413</td>
<td>557/562</td>
<td>.56</td>
<td>HUD</td>
</tr>
<tr>
<td>2/6</td>
<td>33</td>
<td>3528</td>
<td>0/0</td>
<td>383</td>
<td>589/584</td>
<td>.94</td>
<td>HUD</td>
</tr>
<tr>
<td>1/7</td>
<td>34</td>
<td>**</td>
<td>-3/-3</td>
<td>433</td>
<td>552/556</td>
<td>.56</td>
<td>HUD</td>
</tr>
</tbody>
</table>

*1/1 means pilot 1, pass 1, etc.

*2/2 means slant range uncertain

Nominal HUD film tolerances:

- **Slant ranges:** plus zero minus 150 feet
- **Dive angles:** plus or minus 0.5 degrees
- **Velocities:** plus or minus 5 knots
- **Burst times:** plus zero minus 0.021 seconds
MISSION 21 ATTACK ASPECT SUMMARY
(30 OCTOBER 1979)

<table>
<thead>
<tr>
<th>Pilot/Pass</th>
<th>Outer Range</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/1</td>
<td>3118</td>
<td>093</td>
</tr>
<tr>
<td>2/2</td>
<td>3105</td>
<td>090</td>
</tr>
<tr>
<td>1/4</td>
<td>2272</td>
<td>085</td>
</tr>
<tr>
<td>2/4</td>
<td>3392</td>
<td>085</td>
</tr>
<tr>
<td>1/5</td>
<td>2487</td>
<td>085</td>
</tr>
<tr>
<td>2/5</td>
<td>3469</td>
<td>080</td>
</tr>
<tr>
<td>2/6</td>
<td>3528</td>
<td>090</td>
</tr>
<tr>
<td>1/7</td>
<td>*</td>
<td>089</td>
</tr>
</tbody>
</table>

* Position Uncertain

NOTE: Passes 1/1, 1/2, 1/3 and 1/6 resulted in no hits, and are not depicted. Pass 2/3 attack aspect was not recorded and is not depicted.

APPENDIX B
DEFINITIONS

The terms used in this report are defined below:

IMPACT -- Any evidence of a projectile strike against any portion of the target. Ground ricochets striking the target were classified as "impacts".

PERFORATION -- Any rupture of the armored envelope caused by an impacting projectile which results in a complete rupture of an armored surface by the projectile or spall fragments. A perforation can occur only when the armor is impacted. The word "Perforation" was deliberately selected to avoid the ambiguities which may occur through use of the word "penetration". Behind-the-plate effects may or may not result from a perforation.

HIT -- Any impact not classified as a perforation.

MOBILITY KILL (M-KILL) -- Loss of tactical mobility resulting from damage which cannot be repaired by the crew on the battlefield. A tank is considered to have sustained a 100% M-Kill when it is no longer capable of executing controlled movement on the battlefield. Mobility is DEGRADED when a tank can no longer maintain position in its formation.

FIREPOWER KILL (F-KILL) -- Loss of tactical firepower resulting from damage which cannot be repaired by the crew on the battlefield. A tank is considered to have sustained a 100% F-Kill when it is incapable of delivering controlled fire from its main armament. Firepower is DEGRADED when a tank can no longer maintain its "normal" rate-of-fire, velocity, accuracy, time to shift targets, etc.

CATASTROPHIC KILL (K-KILL) -- A tank is considered to have sustained a K-Kill when both an M-Kill and a F-Kill have occurred as the result of killing fires and explosions from ignited fuel and/or ammunition. A tank which has suffered a K-Kill is considered not to be economically repairable, and, by U.S. standards, would be abandoned on the battlefield.

ATTACK ASPECT -- The angle of approach of the aircraft with respect to the orientation of the tank with zero degrees representing the front of the tank (gun forward) and 180 degrees representing the rear of the tank.
SIGNIFICANT IMPACTS -- Impacts which damage systems, components or sub-systems resulting in their destruction or partial loss of function. This type damage contributes to the assessed kill.

INSIGNIFICANT IMPACTS -- Impacts which damage non-critical structural, convenience, or accessory components and which may result in their destruction or partial loss of function, but with no impact on mobility or firepower considerations. Good maintenance practices necessitate repair or replacement of such items at the earliest opportunity consistent with accomplishment of the mission.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mr. R.L. Saley</td>
<td>Aerojet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1025 Connecticut Avenue, N.W.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12th Floor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, DC 20036</td>
</tr>
<tr>
<td>2.</td>
<td>Mr. Marshall Hoyler, Analyst</td>
<td>Congressional Budget Office</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2nd & D Streets, S.W.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, DC 20024</td>
</tr>
<tr>
<td>3.</td>
<td>Dr. John Barmby</td>
<td>U.S. General Account Office</td>
</tr>
<tr>
<td></td>
<td></td>
<td>441 C Street N.W.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, DC 20548</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pentagon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, DC 20330</td>
</tr>
<tr>
<td>5.</td>
<td>Lt. Col. Donald E. Madonna</td>
<td>BQ AFSC/XRLA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Andrews AFB, MD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, DC 20331</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pentagon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, DC 20301</td>
</tr>
<tr>
<td>7.</td>
<td>Dept. of the Air Force</td>
<td>The Albert F. Simpson Historical Research Center/HOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arthur W. McCants, Jr., Lt. Col. Chief, Oral History Branch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maxwell Air Force Base, Alabama 36112</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>354 TFW/DOW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Myrtle Beach AFB, SC 29577</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>81 TFW/CC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RAF Bentwaters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>APO NY 09755</td>
</tr>
</tbody>
</table>
10. 81 TFW/DO
 RAF Bentwaters
 APO NY 09755

11. 23 TFW/DO
 England AFB, LA 71301

12. USAF/TFWC/TE
 Nellis AFB, NV 89191

13. Mr. Jerome H. Stolarow
 U.S. General Accounting Office
 441 C Street, N.W.
 Washington, DC 20548

14. MGen Bernard E. Trainor, USMC
 Education Center
 MCDEC
 Quantico, VA 22134

15. Mr. William Lind
 Office of Senator Gary Hart
 254 Russel Building
 Washington, DC 20510

16. Deputy Chief of Staff for Intelligence
 Headquarters
 Tactical Air Command
 Colonel Herrmann
 Langley AFB, VA 23665

17. Mr. James O. Carson
 Central Intelligence Agency/OSR
 Washington, DC 20555

18. Mr. Robert Korn
 Central Intelligence Agency
 Washington, DC 20555

19. Mr. Richard R. Hallock
 Intrac, Inc.
 606 Wilshire Boulevard - Suite 400
 Santa Monica, CA 90401

20. Library
 (Attention: Reports Section)
 Naval Postgraduate School
 Monterey, CA 93940
21. Mr. C. M. Gordon
GE
777 14th, N. W.
Washington, DC 20005

22. Maj. M. R. Janay, USMC
HQ DARCOM - Code DRCGS-F
50 Embassy Eisenhower Avenue
Alexandria, VA 22334

23. Mr. Raymond R. McEachin
P. O. Box 273
Hazlehurst, GA 31539

24. K. R. Town, USMC
Headquarters, U.S. Marine Corps
Washington, DC 20380

25. Mr. E. Elko
AOMC
9236 Rast Hall Road
Downey, CA 90241

26. Mr. K. H. Wolvington
GE
Lakeside Avenue
Burlington, VT 05401

27. Mr. Dwai Chan
U.S. General Accounting Office
441 C Street, N.W.
Washington, DC 20548

28. HQ TAC/DOOO
Langley AFB, VA 23665

29. USAF Academy
Library
USAF Academy, CO 80840

30. Albert F. Simpson
Historical Research Center
Attention: Mr. Fletcher
Maxwell AFB, AL 36112

31. CMDR Naval Air Systems Command
Attention: PMA 235 B
Washington, DC 20361

32. DASD/ISA/ED
Room 4D800
The Pentagon
Washington, DC 20330
33. Lt. Col. Howard J. Pierson
 139 Booker Street
 Little Rock, Arkansas 72204

34. USAF
 DCS/Plans & Operations Tactical Division
 BF 939B
 The Pentagon
 Washington, DC 20301

35. USAF
 DCS/Programs & Resources
 Director of Programs Tactical Branch
 4C152
 The Pentagon
 Washington, DC 20301

36. USAF
 DCS/Research & Development
 Directorate of Operational Requirements
 & Development Plans
 Tactical Division
 5E381
 The Pentagon
 Washington, DC 20301

37. HQ TAC/DO O
 Langley AFB, VA 23665

38. Mr. Andrew W. Marshall
 Director Net Assessment
 Room 3A930
 Pentagon
 Washington, DC 20301

39. Dr. James A. Ross
 Institute for Defense Analyses
 400 Army Navy Drive
 Arlington, VA 22202

40. Lt Col Lanny T. Lancaster
 HQ TAC/CCS
 Langley AFB, VA 23665

41. Mr. Thomas E. Gaines
 P.O. Box 225907
 Vought Corporation
 Dallas, TX 75265
42. Mr. Emil H. Seaman
Aerojet Ordnance Company
9236 East Hall Road
Downey, CA 90241

43. Mr. Charles E. Myers
2000 S. Eads #113
Arlington, VA 22202

44. Mr. David G. Opheim
Honeywell, Inc.
600 Second Street, N.E.
Hopkins, MN 55343

45. Mr. John D. Pafenberg
HQ USAF/ING - Pentagon, Room 4A882
Washington, DC 20330

46. HQ TAC/XP
Langley AFB, VA 23665

47. USAF TFWC/SA
Nellis AFB, NV 89191

48. 57 FWW/DO
Nellis AFB, NV 89191

49. 12 AF/DO
Bergstrom AFB, TX 78743

50. 9 AF/DO
Shaw AFB, SC 29152

51. CINCUSAFE/DO
Ramstein AFB
APO 09012

52. Major General Kelly, USAF
TFWC/CC
Nellis AFB, NV 89191

53. 66 FWC/CC
Nellis AFB, NV 89191

54. Thomas P. Christie
DASD (Tactical Air Program)
PA&E
Room 2E330
Pentagon
Washington, DC 20330
55. Maj. Davies (ASD/YXA)
USAF/Aeronautical Systems Division
A-10 System Program Office
Directorate of Armament
Wright-Patterson AFB, OH 45433

56. Battelle
Columbus Laboratories
Tactical Technology Center
Room 13-4127
Attention: Mr. J. Tuck Brown
505 King Avenue
Columbus, OH 43201

57. HQ USAF
DSC/RDF
Pentagon - 4 D283
Washington, DC 20330

58. Maj Robert K. Redlin
Commandant of the Marine Corps
Code R&P
Headquarters, U.S. Marine Corps
Washington, DC 20380

59. Lt Gen P. X. Kelley, USMC
Commander
Rapid Deployment Joint Task Force
MacDill AFB, FL 33608

60. Lt. Col. G. W. Keiser (Code RP)
U.S. Marine Corps
Requirements & Programs
Washington, DC 20380

61. Mr. Richard Eppard
Central Intelligence Agency
Office of Logistics
Washington, DC 20555

62. Mr. Rudolf A. Endors
10101 Colebrook Avenue
Potomac, MD 20854

63. Maj Gen Thomas P. Lynch
Commanding General
U. S. Army Armor Center
Fort Knox, KY 40121
76. Mr. P.M. Sprey
Box 264, R.D.1
Glenn Dale, MD 20769

77. Mr. Mike Mecca
Fairchild Industries
Germantown, MD 20767

78. Industrial College of the Armed Forces Library
Ft. Lesley J. McNair
Washington, DC 20319

79. Maj Gerald H. Felix, USAF
112 TFG
Greater Pittsburg Airport
Pennsylvania Air Guard
Pittsburgh, PA 14180

80. USMCDEC
Firepower Division
Air Branch/Code D092
Attention: Ms. Kearns
Quantico, VA 22134

81. USAF TAWC
Eglin AFB, FL 32542

82. Headquarters U.S. Marine Corps
Chief of Staff
Arlington Annex
Room 2010
Columbia Pike & Arlington Ridge Road
Arlington, VA 20370

83. USAF Air University Library
Maxwell AFB, AL 36112

84. Commander, Naval Weapons Center
Attention: Mr. Bates
China Lake, CA 93555

85. Deputy Director/Commanding Officer
Ballistic Research Laboratory
Building 328
Aberdeen Proving Ground, MD 21005

86. GE, Armament Systems Department
Director
Lakeside Ave.
Burlington, VT 05401
87. HQ TAC/DO
Langley AFB, VA 23665

88. 354 TFW/CC
Myrtle Beach AFB, SC 29577

89. 23 TFW/CC
England AFB, LA 71301

90. 356 TFS/DO
Attention: Maj Jenny
Myrtle Beach AFB, SC 29577

91. 355 TFW/DO (A-10)
Davis Monthan AFB, AZ 85707

92. 333 TFTS/DO
Davis Monthan AFB, AZ 85707

93. OLAC 4444 OPS SQ (ISD)
Davis Monthan AFB, AZ 85707

94. 355 TTS/CC
Davis Monthan AFB, AZ 85707

95. Herrn Dr. Stahl
Bundesarchiv-Militärarchiv
78 Freiburg im Breisgau
Weisentr 10
West Germany

96. Mr. Richard E. Tuck
U.S. General Accounting Office
441 C Street, N.W.
Washington, DC 20548

97. Colonel Paul N. Chase
HQ USAF
AF/SAGP
Pentagon – 1D373
Washington, DC 20330

98. Mr. Peter McDavitt
Honeywell
600 Second Street, N.E.
Hopkins, MN 55343

99. Colonel Carl Case
Fighter Division
Air Force Studies & Analysis
Pentagon – 1D380B
Washington, DC 20330
100. Dr. Dieter H. Schwebs
U.S. General Accounting Office
441 C Street, N.W.
Room 6478
Washington, DC 20548

101. Colonel Michael L. Wardinski
HQ Department of the Army
DAMI-RT
Pentagon - BF722
Washington, DC 20310

102. Mr. John Sloan
HQ Department of the Army
DAMI-RT
Pentagon - BF722
Washington, DC 20310

103. Mr. W.R. Beuch
HQ Department of the Army
DAMI-RT
Pentagon - BF722
Washington, DC 20310

104. FMC Corporation
1105 Coleman Avenue
Box 1201
Attention: Mr. Don Loughlin, MC510
San Jose, CA 94108

105. Lt Col J. W. Lent
HQ MC (Code RPR-7)
Washington, DC 20380

106. Mr. Arthur G. Hanley
Central Intelligence Agency
Procurement Management Staff
Washington, DC 20545

107. 50 TFW/CC
APO NY 09109

108. 50 TFW/DO
APO NY 09109

109. 50 TFW/DO
496 TFS
Attention: Maj Ratley
APO NY 09109

110. Colonel Faybanic
AWC/DAUM
Maxwell AFB, AL 36112
111. Mr. Cobleigh
Hughes Aircraft
Canoga Park, CA 91304

112. Boeing
Attention: Mr. Bud Nelson
P. O. Box 3999, M/S 40-30
Seattle, WA 98124

113. IDA
Attention: Dr. Whittemore
400 Army Navy Drive
Arlington, VA 22202

114. HQ USAF
Attention: Lt Gen John Pustay
Office of Chief of Staff
Pentagon
Washington, DC 20330

115. Studiengruppe Luftwaffe
Sicherung Akademie der Bundeswehr
2000 Hamburg 55
Manteuffelstr. 20
Federal Republic of Germany

Salierster. 4
D7500 Karlsruhe
Federal Republic of Germany

117. 91 TFS/CC/Dow
APO 09405
New York, New York 0912

118. 78 TFS/CC/DOW
APO 09405
New York, New York 0912

119. 92 TFS/CC/DOW
APO 09755
New York, New York 0912

120. Military Attache
U.S. Embassy (Rome, Italy)
APO 90794

121. Military Attache
U.S. Embassy (Bonn, Federal Republic of Germany)
APO 09080
New York, New York 0912
122. Military Attache
U.S. Embassy (Saudi, Arabia)
APO 09697
New York, New York 09012

123. Military Attache
U.S. Embassy
Attention: Air Attache
New Delhi, India

124. USAFE/DOOW
Attention: Maj Lindsey
APO New York, New York 09012

125. Mr. James Simon
Central Intelligence Agency
Washington, DC 20505

126. Mr. Aris Pappas
Central Intelligence Agency
Washington, DC 20505

127. Mr. Andrew Hamilton
Congressional Budget Office/NSIA
4th Floor HOB, Annex #2
U.S. Congress
Washington, DC 20515

128. Mr. Pat Hillier
Congressional Budget Office/NSIA
4th Floor HOB, Annex #2
U.S. Congress

129. Dr. Dov Zakheim
Congressional Budget Office/NSIA
4th Floor HOB, Annex #2
Washington, DC 20515

130. Mr. John Hamre
Congressional Budget Office/NSIA
4th Floor HOB, Annex #2
U.S. Congress
Washington, DC 20515

131. Mr. C. Curtiss Johnson
T.N. Dupuy Associates, Inc.
P. O. Box 157
Dunn Loring, VA 22027

132. Col. A. J. Kettering
OSD/OUSDR&E
Pentagon
Washington, DC 20301
133. Mr. Steven Canby
10871 Springknoll Drive
Potomac, MD 20854

134. Director
U. S. Army Aberdeen Research & Development Center
Army Materiel Systems Analysis Agency/DRXSY
Aberdeen Proving Ground, MD 21005

135. Mr. Michael W. Iten/DRXSY-C
U. S. Army Materiel Systems Analysis Agency/DRXSY
Aberdeen Proving Ground, MD 21005

136. Mr. G. A. Zoller
U.S. Army Materiel Systems Analysis Agency/DRXSY
Aberdeen Proving Ground, MD 21005

137. Maj J. F. Balda
U.S. Army Materiel Systems Analysis Agency/DRXSY
Aberdeen Proving Ground, MD 21005

138. Mr. Arif R. Zaky
U. S. Army Materiel Systems Analysis Agency/DRXSY
Aberdeen Proving Ground, MD 21005

139. Mr. Arthur W. Garrett
U. S. Army Materiel Systems Analysis Agency/DRXSY
Aberdeen Proving Ground, MD 21005

140. Mr. T. A. Romanko
U. S. Army Material Systems Analysis Agency/DRXSY
Aberdeen Proving Ground, MD 21005

141. Mr. Stanley Eibertz
U. S. General Accounting Office
441 C Street, N. W.
Washington, DC 20548

142. Mr. Robert S. Dotson
Senate Armed Services Committee
212 Russell Senate Office Building
Washington, DC 20510

143. Mr. Dan Costello
OMB
New Executive Office Building
R10026
Washington, DC 20510

144. Mr. Gerald Mayefskie
Quest Research Corporation
6845 Elm Street
McLean, VA 22101
145. Dr. John E. Tashjean
BDM
7915 Jones Branch Drive
McLean, VA 22101

146. Mr. David A. Brinkman
U.S. General Accounting Office
441 C Street, N.W. - Room 6478
Washington, DC 20548

147. Mr. Wayne H. Coloney
P. O. Box 5258
Tallahassee, FL 32301

148. Lt Gen M.P. Casey, USAF (ret.)
Wayne H. Coloney Company
P. O. Box 5258
Tallahassee, FL 32301

149. Brig General W. H. Fitch
Deputy Chief of Staff, R&D and Studies
USMC
Arlington Annex
Washington, DC 20380

150. Mr. Jim Erickson
Grumman Aerospace
BOS-05
Bethpage, NY 11714

151. Professor Andrew Cyorgy
Sino-Soviet Institute
George Washington University
2029 G Street, N.W.
Washington, DC 20052

152. Mr. Charles Bernard
Director, Land Warfare
OSD/OUSDRE
Pentagon
Washington, DC 20301

153. 162 TFG/FWS (Attn: Lt Col O'Donnell)
P. O. Box 11037
Tucson, AZ 85734

154. Mr. P. Nichols
Ayres Corp
P. O. Box 3090
Albany, GA 31706
155. Defense Technical Information Center (DTIC)
Cameron Station
Alexandria, VA 22314

156. Armament Systems, Inc.
712-F N. Valley St
Anaheim, CA 92801

157. Dean of Research, Code 012
Naval Postgraduate School
Monterey, CA 93940