Die Ausbildung des oberen Braunen Jura im nördlichen Teile der Fränkischen Alb.

(Ein Beitrag zur Kenntnis des fränkischen Jurameeres.)

Inaugural-Dissertation zur Erlangung der Doktorwürde der hohen philosophischen Fakultät der Friedrich-Alexanders-Universität Erlangen vorgelegt von Lothar Reuter aus Gunzenhausen (Mittelfranken).

München.
Kgl. Hof- und Universitäts-Buchdruckerei von Dr. C. Wolf & Sohn.

1908.
Die Schichten des Calloviens, welche das Liegende der Geröll-Lagen bilden.

- Schichten mit *Cosmocr. ornat.*
- " " *Cosm. Castor et C. Pollux*
- " " *Cosmoceras Jason*
- " " *Macroceph. macr.*

Maßstab 1:600000.
Die Ausbildung des oberen Braunen Jura im nördlichen Teile der Fränkischen Alb.
(Ein Beitrag zur Kenntnis des Fränkischen Jurameeres.)

Inaugural-Dissertation
zur
Erlangung der Doktorwürde
der
hohen philosophischen Fakultät
der
Friedrich-Alexanders-Universität Erlangen
vorgelegt von
Lothar Reuter
aus Gunzenhausen (Mittelfranken).

München.

Kgl. Hof- und Universitäts-Buchdruckerei von Dr. C. Wolf & Sohn.

1908.
Seinem Onkel

Herrn Professor Friedrich Reuter
in Erlangen

gewidmet vom Verfasser.
Die Ausbildung des oberen Braunen Jura im nördlichen Teile der Fränkischen Alb.

(Ein Beitrag zur Kenntnis des fränkischen Jurameeres.)

Von

Lothar Reuter.

Einleitung.

Im Frühjahr 1905 bezog ich zur Vollendung meiner Studien die Universität Erlangen; hier fand ich an Herrn Professor Lenk einen wohlvollenden Lehrer, der mich ermutigte, den oberen Braunen Jura im Bereich der nord-östlichen Hälfte der Fränkischen Alb einer Durchforschung zu unterziehen.

Die Fossil-Listen beanspruchen nicht, eine vollständige Übersicht und Beschreibung der betreffenden Ammoniten-Faunen zu geben. Es bleibt vielmehr späteren Forschern überlassen, die einzelnen Lokalitäten richtig auszubeuten und die erhaltenen Fundstücke faunistisch zu bearbeiten.

Für manche Hilfe zur Ausführung der vorliegenden Arbeit bin ich zu lebhaftem Danke verpflichtet. Hatte mich Herr Professor Pompecki in München und in Hohenheim in die Methoden des Bestimmens und in die weitsichtige Literatur eingeführt, so gestattete mir Herr Professor Lenk in Erlangen in liberalster Weise die Benützung aller Hilfsmittel seines Instituts. Hier in München erlaubten mir die Herren Professor Dr. Rothpletz, Dr. Broili und Dr. Schlosser im paläontologischen Institut der Universität zu arbeiten und Bibliothek und Sammlung zu benützen. Eine wesentliche Vermehrung des Materials verdanke ich meinem verehrten Chef Herrn Oberbaurat Brenner in München, der mir gestattete, die unter Aufsicht des Kgl. Bayer.Wasserversorgungsbureaus gemachten Aufschlüsse zu besuchen. Herr Oberbergrat Dr. von Ammon gewährte mir die Durchsicht der einschlägigen Fundstücke der geognostischen Landesdurchforschung; wenn ich daher hier allen Gönnern und Förderern danke, so darf er um so weniger vergessen werden, da er schon vor 35 Jahren den entscheidenden Weg zu einer richtigen Darstellung der Juraverhältnisse eingeschlagen hat.

Das Material, welches ich für die vorliegende Abhandlung im Frankenjura sammelte, wird dem geologischen Institut der Universität Erlangen überwiesen.

Für das hier untersuchte Juragebiet kommt folgende Spezial-Literatur in Betracht:

I. Die untersuchten Profile.

Allgemeines über die Aufschlüsse in der oberen Braunjura-Stufe.

Für die vorliegende Abhandlung wurden die Juraränder, d. h. die sich um die Weißjurasteilränder herumziehende Terrasse der Grenzschichten zwischen Dogger und Malm, nördlich der Linie Erlangen—Hersbruck—Regensburg begangen, um die Aufschlüsse kennen zu lernen. Schöne Aufschlüsse wurden nur an wenigen Punkten gefunden (Ober-Rüsselbach, Leyerberg, Uetzing, Trockau, Buchau b. Pegnitz, Troschenreuth, Auerbach, Münchshofen).

Für die beschriebenen Profile wurden jedoch nur Lokalitäten gewählt, wo die Schichten noch in ihrer ursprünglichen Lagerungsform zu beobachten waren. Durch Grabungen, die an solchen Plätzen vorgenommen wurden, ergaben sich dann die Details.
Es sei an dieser Stelle hingewiesen auf die möglichen Trugschlüsse, welche sich ergeben, wenn man in der Auswahl der Plätze nicht sehr vorsichtig ist und ohne weitere Voruntersuchungen glaubt, nach Horizonten sammeln zu können.

Der Ornamenton bildet im Untergrund der Weißjura-Gesteine eine konstant auftretende, für Wasser undurchlässige Schicht. Deshalb sammelt sich auf ihm das durch die aufliegenden Gesteine herabsinkende Wasser und tritt auf der ausstreichenden Oberfläche des Tones zutage. Die Wirkungen des Wassers machen sich durch Ablagerung, durch Erosion und durch die sich bei der rückwärtsschreitenden Talbildung ergebenden Veränderungen bemerkbar.

Als Ablagerungen sind die Tuftsteinmassen zu nennen, die sich aus dem mit Kalk gesättigten Wasser abscheiden. Sie überlagern stellenweise — namentlich in größeren Quellgebieten — die Tone in solcher Mächtigkeit, daß sie mittels Steinbruchbetrieb abgebaut werden können. Wo nur kleine Quellwassermengen aus den Jurakalken kommen, entstehen geringere Kalkablagerungen, über denen sich eine reiche Flora ansiedelt. Ebene Flächen werden dadurch zu Mooren, geneigte sind Rutschungen ausgesetzt, namentlich wenn sie bewaldet sind.

1) 60 cm Weißjura-Schutt,
2) 20 „ Humus mit Weißjura-Geröll,
3) 15 „ Grauer glaukonitischer Mergel,
Typischer Humus,
in Als nach getroffen, zu Fossilinhalt zum nirgends Zerstörung hinauszugehen in Anplastischen weiter der gab rutsch, abhang (unfern natürlich der namentlich stürzen zogen.

Der Inhalt desselben findet sich wiedergegeben in Poronéis naturwissenschaftlicher Wochenschrift; Neue Folge VI, 1907, S. 378. Literaturangaben über den Gasseldorfer Rutsch sind auch in v. Ammons Kleinem Geol. Führer etc., S. 15 u. 16 enthalten.

Es folgt nun die Beschreibung der einzelnen Profile. Die Anordnung ist so getroffen, daß zunächst die Profile des Westrandes in ihrer Reihenfolge von Süd nach Nord und dann diejenigen des Ostrandes von Nord nach Süd besprochen werden.

Bezüglich der Einteilung in West- und Ostrand ist folgendes zu bemerken: Als Grenze zwischen West- und Ostrand ist im Norden die Gegend von Weißmain
Die Ausbildung des oberen Braunen Jura im nördlichen Teile der Fränkischen Alb.

(Görau—Zultenberge) angenommen. Im Süden trennt das Weißenjura-Massiv beide Ränder. Die Jurascholle im Nordosten bei Weißenbrunn und Kirchlous wurde, obwohl sie sich in petrographischer und faunistischer Hinsicht enge an die Ausbildung des Westrandes anschließt, in den Profilskizzen zum Ostrand gestellt, um den Übergang der westlichen Facies des Callovians in die östliche darzustellen zu können.

Der Westrand des Frankenjura.

Der Braune Jura am Leyerberg.

12 km nordöstlich von Erlangen erhebt sich der inselartig vom Frankenjura abgetrennte Leyerberg. Sein ausgedehntes Plateau wird von den Werkkalken des Weißen Jura bedeckt, um dessen Steilrand sich die tonigen Schichten des oberen Braunen Jura als breite Terrasse herumziehen. An dem Südwest- und Nordostende des Berges sind dieselben gut aufgeschlossen und der Fossilreichthum dieser Stellen veranlaßte bereits zwei Autoren, diese Stellen in der geologischen Literatur bekannt zu geben. Sie finden sich beschrieben in:

Beide Autoren scheinen nur die an der Oberfläche ausstreichenden Bänke der fossilreichen Oolithkalke berücksichtigt zu haben, denn bereits BalDUS konnte die einzelnen Zonen des WAAGEN'schen Profiles nicht mehr in der angegebenen Reihenfolge auffinden; und auch das von Baldus gegebene Profil ist jetzt nicht mehr den Angaben entsprechend zu beobachten.

Da es für die vorliegende Abhandlung unerläßlich war, über die einzelnen Zonen und ihren Fossilinhalt genaue Anhaltspunkte zu bekommen, ließ ich an der Nordost-Ecke des Berges, wo sich das anstehende, noch unverletzte Gestein zeigte, vier Gruben von zusammen 7 m Tiefe zwischen der unteren Partie der Tonlagen mit verkisten Macrocephalen und dem Eisensandstein ausheben. Die unter beständiger Aufsicht unternommene Grabarbeiten ergab das folgende Profil.

Der Aufschluß am Südwest-Ende des Berges eignete sich weniger zur stratigraphischen Gliederung. Über diese Stelle führt seit alter Zeit ein Verkehrswege; durch die vielen Unterhaltungsarbeiten, die derselbe infolge der weichen, tonigen Unterlage erforderte, können die Schichten nicht mehr als solche, die sich in ihrer ursprünglichen Ablagerung befinden, angesprochen werden. Überraschend ergab sich beim Vergleich der härteren Gesteinsbänke eine in petrographischer und faunistischer Hinsicht völlig gleiche Übereinstimmung zwischen beiden Profilabschnitten.

(Profile Leyerberg siehe nächste Seite.)

Erläuterungen.

II. Callovien. Das ganze nahezu 13 m mächtige Callovien besteht — mit Ausnahme der in den untersten Lagen enthaltenen Kalkbänke (16,18 des Profils) — aus tonigen Schichten. Diese bilden eine bis zu 250 m breite, sanft ansteigende
Der Braune Jura am Leyerberg.

Profil der Braun-Jura-Schichten am Leyerberg.

Die Stelle dieses Profils befindet sich 1 km nordwestlich von Pommer, am Weg von Hetzlas nach Weingarts.

<table>
<thead>
<tr>
<th>Zonen</th>
<th>Nr.</th>
<th>Ausbildung der einzelnen Schichten</th>
<th>Mächtigkeit</th>
<th>Mächtigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxford</td>
<td>23</td>
<td>Gelblichgraue Kalkbänke mit kleinen Glaubonitkörnchen durchsetzt. Perisphinctes plicatilis.</td>
<td>0,2 bis</td>
<td>0,3</td>
</tr>
<tr>
<td>Callovien</td>
<td>22</td>
<td>Grauschwarzer schiefriger Letten, fossiliser mit Glaubonit und Glazierschuppchen.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>Gelblichgrauer Ton mit Glaubonitkörnchen; in den oberen Lagen sind letztere in solcher Menge, da Man entwickelt bekommen Phosphoritkörnchen mit Ammoniten-Einschlüssen sind häufig. Cosmocestae Castor, C. Jason; Reineckia aniceps, R. Fraseri; Stephanoceras coronatum; Hectoroceras Brighti, H. rossense, H. pseudoponnetatum, H. lunula.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Grauschwarzer schiefriger Letten mit phosphoritischen Steinkernen und kalkigen Schalenresten von großer Perisphincten.</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>Macrococelites macrocephalus</td>
<td>18</td>
<td>Graublau, oolithische Kalkbank von porzellanartigem Bruch, mit großen Perisphincten. Die Bank ist nur stellenweise in Form abgerundeter, Brothas-artiger Steinknollen vorhanden.</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Grauschwarzer Ton.</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Blaugraue, oolithische Kalksteine, häufig mit phosphoritischen Steinkernen großer Perisphincten verwachsen.</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Bathonien</td>
<td>15</td>
<td>Grauschwarzer Ton, in der unteren Partie linienförmige Nester, erfüllt von feinen weißen Kalkschälen der Rhyconella varians.</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Oppelia aspoides</td>
<td>14</td>
<td>Bank der Oppelia aspoides: blaugraue oolithische Kalk mit eingeschlossenen Phosphoritknollen und phosphoritischen Steinkernen der Oppelia aspoides und O. fusca; beide Ammoniten auch als Kalk-Exemplare vorhanden.</td>
<td>0,15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Phosphoritische Knollen mit Oppelia aspoides und Parkinsonia ferruginea.</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Zonen</td>
<td>Nr.</td>
<td>Ausbildung der einzelnen Schichten</td>
<td>Mächtigkeit</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----</td>
<td>--</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Dunkler graublaue Ton mit Bruchstücken von Muschelschalen und vielen weißen Kalkkonkretionen.</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Untere Kalkbank: frische Bruchflächen etwas körnig, graublaue. Alectryonia Marshi.</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Graugelber Tonmarg mit Bellermites giganteus, Alectryonia Marshi, Trigonia costata; Stacheln von Seeigeln (Rhabdocidaris).</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Kalksandstein, durch Auslauung und Verwitterung meist luckig zerklüftet. Soninina Sowerbyi, Trigonia costata</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Graublaue Ton, nach unten in sandigen Lehm übergehend.</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Gelbbrauner Sandstein.</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Graublaue schiefreger Ton.</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Liegendes: zunächst viele Lagen gelbbräuer Sandsteinbänkchen von 2–5 cm Stärke;</td>
<td>ca. 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>darunter der typische Eisensandstein.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Durch die vorgenommenen Aufgrabungen konnte das Callovien in zwei große Gruppen eingeteilt werden: in die oben aufliegenden Geröll-Lagen, welche den eigentlichen Ornamenten vertreten und in die Macocephalen-Schichten.

Cosmoceras cf. Castor **Rein.**
Jason **Rein.**
Stephanoceras coronatum **Brug.**
Reineckia cf. anceps **Rein.**
Fraasi Opp.
Hecticoceras Brighti **Pratt.**
rossiense **Teiss.**
pseudopunctatum **LaH.**
cf. lunula **Ziet.**

Außerdem liegen abgerollte Bruchstücke von Peltoceras-Formen vor. In den Knollen ist *Posidonia ornata* Qu. häufig. Die Geröllschicht enthält hier also Vertreter aller Zonen des fränkischen Ornamentons als regellos gelagerte Stücke, deren Erhaltungszustand darauf hinweist, daß sie sich nicht mehr auf ihrer ursprünglichen Lagerstätte vorfinden.

2) **Macrocephalen-Schichten.** Nach unten hin undeutlich begrenzt, gehen die Tone der Geröll-Lage allmählich in härtere, geschieferte Tone (Schicht 20) über. Dieselben erreichen die Mächtigkeit von 10 m und schließen die bereits erwähnten Goldschnecken ein. Von diesen sind anzuführen:

- **Macrocephalites tumidus** **Rein.**
 Die häufigste Ammonitenart in diesen Tonen.

- **Perisphinctes euryptychus** **Neum.**
 subtilis **Neum.**
 fusatus **Opp.**

- **Hecticoceras heticium** **Rein.**

- **Proplanulites subcuneatus** **Teiss.**

- **Sphaueroceras** sp. cf. *Sph. platystomus* **Rein.**

- **Cardioceras** sp. cf. *Ammonites Chamusseti* **d'Orb.**

Sowohl am Leyerberg, wie bei Wildenberg fand ich in den Macrocephalen-Tonen verkieste Stücke, die wahrscheinlich dem *Am. Chamusseti*, wie ihn QUENSTEDT (Jura Taf. 70 Fig. 21; Ammoniten, Taf. 90, Fig. 18) abbildet, angehören. Bisher gelang es nicht, ein vollständiges Exemplar in Franken zu finden. Die vorliegenden Bruchstücke lassen erkennen, daß bei den äußeren Windungen die ebenen Flanken rasch gegen den Rücken hin abfallen, wodurch ein kantiger Kiel und ein dreieckiger Querschnitt entsteht; die inneren Windungen haben dagegen einen mehr ovalen Querschnitt. Die Rinnen verlaufen stark nach vorne geschnürt bis zum Kiel hin, wo sie am kräftigsten entwickelt sind; auf dem Kiel vereinigen sie sich knotenartig, ähnlich wie bei *Cardioceras Lumberti*, der indessen weitaus größer ist.

Ferner liegen Bruchstücke von Arten vor, die zu der Gattung *Hamites* (QUENSTEDT, Jura S. 483) zu zählen sind.

Unter der so mächtig entwickelten Tonfacies mit Goldschnecken befindet sich diejenige mit phosphoritischen Stein kernern (Schicht 19). Während die Ammoniten der erstgenannten Facies durch ganz kleine, selten 3 cm im Durchmesser überschreitende Individuen vertreten sind, liegen hier ausschließlich große Formen vor. Macrocephalen sind selten, werden aber gefunden; Perisphincten treten in großer Menge auf. Es sind triplikate Formen, die dem *Perisphinctes fusatus* Opp. sehr nahe stehen. An den dunklen phosphoritischen Stein kernern haften häufig noch die starken weißen Kalkschalen der Ammonitengehäuse. Die Außenfläche derselben ist meist glatt und gegen die Seiten hin gewölbt. Die Bruchstücke lassen darauf schließen, daß die ganzen Exemplare häufig einen Durchmesser von 50 cm und
Die Ausbildung des oberen Brauen Jura im nördlichen Teile der Fränkischen Alb.

Schicht 16 und 18 schließt die verhältnismäßig am besten erhaltenen Perisphincten ein. In letzterer liegt übrigens die höchste Kalkbank im Brauen Jura des Leyerberges vor.

Fällt man die hier über die facielle Ausbildung gemachten Beobachtungen zusammen, so ergibt sich folgendes: Die normal gelagerten (geschieferten) Tone (20) scheinen mit der hier so mächtig entwickelten Macrocephalenzone zu enden; ich fand wenigstens keine typischen verkieselten Stücke der Jasonzone. Die über 2 m tiefen Gräben, die ich sowohl im Frühjahr 1905 wie im Herbst 1907 in der Grenzregion zwischen Geröllzone und geschieferten Tonen ziehen ließ, erwiesen sich als fossiler. Es ist daher anzunehmen, daß unter der Geröll-Lage die oberste Region der Macrocephalenzone oder vielleicht auch noch ein Teil der Jasonzone liegt. Die höheren Lagen fielen vor Ablagerung der Weißjura-Sedimente der Denudation anheim; ihre widerstandsfähigen phosphoritischen Einschlüsse liegen regellos durcheinander in den 2 m mächtigen gelblich-grauen Tonen.

III. Das Bathonien ist an der in Rede stehenden Lokalität besser als an anderen Punkten des Frankenjura entwickelt. In der obersten Tonlage (15) tritt Rhynchothella varians in einer Unmenge von Exemplaren auf. Sonderbarerweise sind die weißen silberartig-glänzenden Schälchen als solche erhalten; da sie keine Steinkerne einschließen, sind sie zerdrückt und bilden lose Anhäufungen, die nesterweise dem dunklen Ton eingelagert sind. Ebenso wurde von Pleurotomaria ornata ein schönes großes Schalenexemplar ohne Steinern gefunden, das leider bald an der Luft zerfiel.

Darunter folgt die Kalkbank (14) des Bathoniens. Die blaugrauen oolithischen Kalke schließen große schwarze Phosphoritknollen und phosphoritische Steinkerne von Ammoniten (Oppelia aspidoides Opp.; O. fusca Qu.) ein.

Ebenso enthalten die darunter liegenden Tone schwarze Phosphoritkonkretionen, die sich um Ammonitengehäuse angelagert haben. Im Gegensatz zu den Geröllen des Ornatenons zeigen die Ammoniten keine Spuren von Abrollung. Sie besitzen meist eine herrliche hornartig glanzend-schwarze Oberfläche mit schöner Lobenzeichnung und gehören folgenden Arten an:

- Oppelia aspidoides Opp.
- Parkinsonia ferruginea Opp.

IV. Bajocien. 1) Zone der Parkinsonia Parkinsoni. Die 2 m mächtigen grauschwarzen schiefen Tone (12) erwiesen sich bei den vorgenommenen Grabungen als fossilleer. Trotzdem wurden an verschiedenen benachbarten Stellen verkiesete ca. 3 cm im Durchmesser haltende Exemplare des P. Parkinsoni lose herumliegend gefunden, die aus einer der vorliegenden Tonen entsprechenden Schicht ausgewittert sein dürften. Ebenso resultatlos verließ die Grabung in den darunter liegenden Tonschichten (11 und 10). nur die unterste lieferte unbestimmbare Muschelbruchstücke.

2) Zone des Stephanoceras Humphriesianum. Hier, wie am ganzen Westrand der Alb zwischen Gräfenberg und Scheßlitz ist diese Zone durch zwei Kalkbänke (8 und 9) und die darunter liegenden fossilreichen Tonmergel (7) vertreten. Die obere Kalkbank unterscheidet sich von der unteren durch eine mehr blaufarbenen Tonschicht.
Farbe, durch feinernes Korn und ein verhältnismäßig hohes spezifisches Gewicht. Ihre Oberfläche ist von Bohrmuscheln zerrissen.

Die untere Kalkbank ist fossilärmer, schließt jedoch häufig Pecten- und Austernschalen ein. Der grangelbe, 0,4 m mächtige Tonmergel (7) liefert an mehreren Stellen des Berges die charakteristischen Versteinerungen der Humphriesianum-Zone in gutem Erhaltungszustand.

3) Zone der *Sowinicia Sowerbyi*. Der dieser Zone angehörende harte zerfressene Kalkstein enthält neben unzähligen Bruchstücken dünner und dicker Muschelschalen häufig auch gut erhaltene Formen. Wo im Boden eine teilweise Zersetzung des Gesteins stattfinden konnte, ist das Bindemittel verschwunden und die weiblichen Muschelschalen liegen dann frei in dem durch Oxyde des Eisens und Mangans dunkelbraun gefärbten, erdigen Verwitterungslehm. WAAGEN beutete einige solche Stellen aus und erhielt dadurch das Material zu seiner Fossiliste (l. c. S. 528 [22] and 529 [23]). Von meinen aus dem anstehenden Gestein erhaltenen Stücken ist als wesentlich hervorzuheben:

Sowinicia Sowerbyi MILL.

(QUENSTEDT, Ammoniten. Taf. 61 Fig. 4.)

Die Schicht 5 enthält nur Schalenbruchstücke von Bivalven, weshalb ihre Zugehörigkeit zu dieser oder der nächstfolgenden Zone nicht sicher zu bestimmen ist.

4) Die Zone des *Harpoceras Murchisonae* dürfte ihr oberes Ende aus petrographischen Gründen in Schicht 4 erreichen, da von hier an nach abwärts der sandige Charakter der Gesteine vorherrscht. Schicht 1 enthält die gegen 60 cm mächtigen Sandsteinmassen, die auf der sanft ansteigenden Fläche des weit um den Berg ausgebreiteten Opalinustones ruhend, sich als steiles Gehänge erheben und das Liegende der hier besprochenen Schichtengruppe ausmachen. Diese ganze Sandsteinmasse ist nahezu fossil leer; nur etwa in halber Höhe des Steilhanges kommen einige rotbraune oolithische Kalksandstein-Lagen vor, welche neben großen und kleinen Bivalvenschalen

Harpoceras Murchisonae Sow. und

Pecten pumilus LAM. (= *P. personatus* GOLDF.)

einschließen. Da diese Bank infolge des Kalkgehaltes widerstandsfähiger als der eigentliche Eisensandstein ist, macht sie sich stellenweise, z. B. in den Hopfenhäusern oberhalb des Ortes Pommer als kleine Terrasse bemerkbar.

Vergleicht man das vorstehende Profil mit denjenigen, welche WAAGEN und BALDUS gaben, so wird man hinsichtlich der Anzahl der Kalkbänke und ihrer Zwischenlagen auf manche Verschiedenheit treffen. Es ist dies wohl dadurch zu erklären, daß die früheren Autoren sich mit Aufzählung der oberflächlich beobachteten oder durch seichte Schürfung aufgefundenen Schichten begnügten.¹)

¹) Eine vergleichende Zusammenstellung der beiden genannten Profile mit dem hier aufgestellten wird in den Sitzungsberichten der phys.-med. Sozietät in Erlangen (Band 40 oder 41) gegeben werden.
Oberrüsselbach.

Der Ort Oberrüsselbach liegt von der Stelle des vorigen Profils ca. 10 km entfernt im Südosten. An der Nordseite des Ortes entspringt eine kleine Quelle aus den untersten Kalkbänken des Weißen Jura; ihr Wasser, das mit großem Ge- fälle talabwärts fließt, hat in seinem Oberlauf eine kleine Schlucht in die Braun- Jura-Schichten gerissen. Die Lagen des Bajociens sind in der Schlucht teils ver- stürzt, teils bewachsen, dagegen bietet das freiliegende Bathonien und Callovien gute Gelegenheit zum Beobachten der Schichtenfolge. Dieselbe ergibt folgendes Profil:

Profil Oberrüsselbach.

<table>
<thead>
<tr>
<th>Zonen</th>
<th>Nr.</th>
<th>Ausbildung der einzelnen Schichten</th>
<th>Mächtigkeit m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peltoceastransversarium</td>
<td>7</td>
<td>Helle, gelbliche Kalkbank, durchsetzt mit kleinen Glaukonit-</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>körnchen. Perisphinctes plicatilis.</td>
<td></td>
</tr>
<tr>
<td>Cosmoceras</td>
<td>5</td>
<td>Graue geschieferte Tonlagen. Die obere Hälfte mit Phosphorit-Konkretionen und Ammoniten, bei denen häufig die inneren Windungen aus Schwefeldioxid bestehen. Cosmoceras Castor; Stephanoceras coronatum; Reineckia Friaasi; Hecticoceras punctatum, H. rossiense; Belonmites callovien.</td>
<td></td>
</tr>
<tr>
<td>Castor und C. Pollux</td>
<td></td>
<td>In der unteren Hälfte nur zersetzte, ursprünglich verkiesste kleine Ammoniten und Abrücke von solchen.</td>
<td></td>
</tr>
<tr>
<td>Cosm. Jason</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrocephalites</td>
<td>4</td>
<td>Dunkelgrauer Ton, voll von Brauneisen-Oolithkörnern. Belonmites callovien häufig.</td>
<td>0.5</td>
</tr>
<tr>
<td>macrocephalus</td>
<td>3</td>
<td>Kalkbank mit Oolithkörnern, stellenweise auskeilend und dann durch Phosphoritkonkretionen mit Oolithin-</td>
<td>0.1 bis 0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>schlüssen vertreten.</td>
<td></td>
</tr>
<tr>
<td>Oppelia aspidoides</td>
<td>2</td>
<td>Blaugraue Tonlagen, geschiefert.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Harte, blaugraue Kalkbank mit glatten Bruchflächen. Stellenweise nur in Form großer brotnaibörmiger runder Knollen vorhanden. Oolithisch. Oppelia aspidoides, Perisphinctes sp.; Rhynchosella varans.</td>
<td>0.1 bis 0.15</td>
</tr>
</tbody>
</table>
Erläuterungen.

I. Callovien. 1) Geröll-Lagen. Unter den glaukonitischen gelben Kalken mit *Perisphinctes plecidilis* liegen zunächst Tone, deren obere Partie die Glaubkönigte und Pentameritten repräsentiert, während die untere Partie die an Ammoniten-Einschlüssen reichen Phosphoritkämme enthält. Die Ammoniten tragen deutliche Spuren der Abrollung, sind aber verhältnismäßig besser erhalten als an anderen Lokalitäten. Es wurde gefunden:

Cosmoceras ornatum SCHLOTH.
In mehreren Exemplaren. Das besterhaltene Stück ist im paläontologischen Teil dieser Abhandlung abgebildet.

Distichoceras sp. cf. *Ammonites bipartitus* QUENST.
(*QUENSTEDT, Ammoniten. Taf. 85 Fig. 8*), Wohnkammer.

Diese Lagen enthielten:

Cosmoceras Castor REIN.
Stephanoceras coronatum BRUG.
Reineckia Fraasi OPP.
Hecticoeceras cf. *punctatum* ZIET.
" cf. *rossiente* TESS.

Diese Fauna entspricht der mittleren Zone des fränkischen Ornamentons (Zone mit *Cosmoceras Castor* und *C. Pollux*).

Als eine besondere Schicht ist die unterste Partie der Tone abzutrennen. Diese enthalten auf ihren Schichtflächen nur noch vollständig zersetzte Ammonitenreste, die nach der restgelben Farbe zu urteilen, ursprünglich verkiest waren. Unter den Abdrücken waren solche, die infolge der hohen Umgänge, des engen Nabels und der dicht stehenden Rippen dem *Cosmoceras Jason* angehören dürften.

Auf der Tabelle ist daher die Jason-Zone als vorhanden angenommen.

Darunter folgen Tone, die durch die dunklere Farbe und die in Unmasse darin auftretenden Brauneisen-Oolithkörner leicht zu unterscheiden sind. Unter
ihnen liegt eine oolithische Kalkbank. Dies ist die Facies, welche die Macrocephalenzone weit nach Süden und Südwesten hin beibehält. Bei Hersbruck und bei Neu­markt i. Opf. tritt sie in dieser Form auf. Hier bei Oberrüsselbach beginnt die Kalkbank bereits auszukeilen, denn stellenweise ist sie nur noch in runden Knollen von Brotlaib-Form vorhanden, dazwischen liegen Phosphoritkonkretionen, die mit großen Oolithkörnern durchsetzt sind.

Bezüglich der faciellen Ausbildung des Callovians ergibt sich hier somit folgendes Schema:

<table>
<thead>
<tr>
<th>Callovien</th>
<th>Zone des Cosmoceras ornatum</th>
<th>Gerölle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ornatenton</td>
<td>Zone des C. Castor und C. Pollux</td>
<td>Phosphorite</td>
</tr>
<tr>
<td>Macrocephalen-</td>
<td>Zone des Cosmoceras Jason</td>
<td>Pyrite</td>
</tr>
<tr>
<td>ton</td>
<td>Zone des Macrocephalites macrocephalus</td>
<td>Phosphorite Kalk</td>
</tr>
</tbody>
</table>

II. Bathonien. Unter der durch ihre charakteristische petrographische Beschaffenheit zur Macrocephalenzone zu rechnenden Kalkbank folgen in der Schlucht wiederum geschieferte Tone, die etwas über 3 m hinabreichen, wo dann infolge von Verrüschungen und der Vegetationsdecke der Aufschluß endigt. In diesen Tonen befindet sich die Kalkbank mit *Oppelia aspidoides*. Die im Gestein eingeschlossenen Oolithkörner sind kleiner als diejenigen der Macrocephalen-Bank.

Die tieferen Zonen sind nicht mehr aufgeschlossen, auch fand ich an dem teils bebauten, teils bepflanzten Steilgehänge der Umgebung keine zu Aufgrabungen passende Stelle.

Aus den lose gemachten Funden geht hervor, daß *Parkinsonia ferruginea* in Form phosphoritischer Steinkerne vorkommt, während sich in der Zone der *Parkinsonia Parkinsoni* bereits oolithische Mergelbänke einstellen. Die Zone des *Stephanoceras Humphriesianum*, welche weiter südlich durch den Fossilreich tum ihrer Oolithmergel-Bänke leicht kenntlich ist, wurde hier nicht beobachtet, scheint also bereits in die fossilärmere Kalksteinfacies der nördlicheren Gebiete überzugehen. Die *Sowerbyi*-Zone ist durch Kalksandsteine, die von Büscheln der *Serpula socialis* durchzogen sind, vertreten.

Bondorf bei Schnaittach.

Anschließend an das Profil Oberrüsselbach ist noch ein Aufschluß zu erwähnen, der 9 km von hier in südwestlicher Richtung liegend, beobachtet werden konnte.

Im Frühjahr 1907 wurden oberhalb Bondorf drei über dem Ornatenton entspringende Quellen für die Wasserversorgung des Marktes Schnaittach gefaßt. Als ich die Baustelle besichtigte, war die mittlere Quelle durch einen tiefen Graben erschlossen, wodurch der mehrere Meter mächtige Weißjura-Schutt durchtrennt und die darunter liegenden gelben Kalke (Weiß z), ferner die Glaukonitschieht und die obere Region des Ornatontons freigelegt worden waren. Der Graben selbst war infolge starken Wasserandranges unzugänglich, dagegen gestattete das ausgehobene Material eine Orientierung.
Die unter der Glaukonitschicht liegende Geröllzone konnte nach den wenigen vorhandenen großen Phosphoritknollen hier nicht besonders mächtig gewesen sein. Die darin aufgefundene Ammonitenwaren meist zerbrochen und derart abgeschliffen, daß nur folgende Arten bestimmt werden konnten:

Hecticoceras punctatum Stahl.
" pseudopunctatum LAL.
(Ein kleineres Exemplar von 30 mm Durchmesser und ein größeres, an den Rändern abgeschliffenes Stück, das ca. 70 mm im Durchmesser haben mochte.)

Hecticoceras rossiiense Teiss.
Peltoceras sp.
Bruchstücke großer Exemplare.
Perisphinctes sp. cf. Per. sulciferus Opp.

Außerdem enthielt die ausgebaggerten schiefrigen Tonmassen zahlreiche Abdrücke von *Cardiocerata*. Diese haben einen Durchmesser von 3—5 cm und sind unregelmäßig; die deutlich hervortretenden Rippen teilen sich auf der Mitte der Flanken und verlaufen von da stark nach vorwärts geschwungenen Rippen. Zwischen die gegabelten Rippen scheinen sich häufig einfache Rippen ein. Der Querschnitt ist nicht zu erkennen. Diese Formen, welche infolge ihres Erhaltungszustandes keine präzise Bestimmung zulassen, stimmen am besten mit dem von LAMUSEN, Rjasan Taf. V Fig. 3 abgebildeten *Cardioceras cordatum* überein.

Vom südlichen Teil des Westrandes wäre noch ein Profil zu bringen und zwar von Hartmannshof (7 km östlich von Hersbruck), wo die nach Osten geneigten Braunjura-Schichten allmählich unter der Talsohle verschwinden, um erst jenseits der Weißjura-Höhen, in der Sulzbacher Gegend, wieder zutage zu treten.

Tiefenstürmig.

Der Ort Tiefenstürmig befindet sich 12 1/2 km nordnordöstlich von Forchheim. In einem in den Eisensandstein eingegrabenen engen Talkegel gelegen, wird er auf drei Seiten von den sich steil erhebenden Weißjura-bergen umgeben, während sich das Talchen allmählich gegen Süden hin erweitert und vertieft. Mehrere kleine Bäche, die ihren Ursprung auf den oberen Braunjura-Tonen nehmen, kommen von den Höhen und vereinigen sich im Ort zum Eckerbach, der nach kurzem Lauf unterhalb Eggolsheim in die Regnitz mündet.

Aufschlüsse im Braunen Jura befinden sich sowohl an dem Fahrweg, der über den Kautschenberg in der Richtung nach Frankendorf führt, wie an demjenigen, der sich gegen Osten zur langen Meile emporzieht.
Aufschluß westlich von Tiefenstürmig. Hier sind besonders schön die an dieser Stelle ungewöhnlich stark entwickelten Kalksandsteinbänke der Sowerbyi-Zone aufgeschlossen, während die darüber liegenden Zonen verschüttet sind. Von diesen Bänken, die stellenweise zusammenhängen, ist die obere 35 cm mächtig und von blaugrauer Farbe; sie besteht der Hauptsache nach aus hartem, rauhem Kalk und schließt unzählige Bruchstücke von Muschelschalen ein. Als wichtig zu erwähnen ist ein darin aufgefundenes 8 cm im Durchmesser haltendes Exemplar von Soninia sp. cf. Sowerbyi Mill. (Wagen, Zone der Sonn. Sow., Taf. 27 Fig. 2.) Das vorliegende Stück weicht von der Abbildung dadurch ab, daß der Querschnitt der Wändungen in der Nähe der Außenseite weiter ist, ferner dadurch, daß die Kanten auf den Flanken bei der Größe des Wagenschen Exemplares nicht mehr vorhanden sind.

Die zweite (untere) Bank ist 45 cm mächtig; ihre obere Partie ist wiederum voller Muschelbruchstücke, daneben macht sich Scurpula socialis Goldf. durch ihre das Gestein durchziehenden Büschel bemerkbar, ebenso sind Glieder von Encriniten-Stielen häufig. Die untere Partie schließt abgerollte Stücke von Eisensandstein ein, bildet also eine Art Grundkonglomerat.

Diese Bänke entsprechen also den Lagen, welche Schroeter bei Frankendorf beobachtete, und die er in die unterste Zone der „Schichten mit Belemnites gigantens“ stellte.1) Jetzt sind dieselben an der von ihm genannten Lokalität nicht mehr anstehend zu beobachten, sie lassen sich aber durch die herumliegenden ausgewitterten Stücke als vorhanden nachweisen.

Unter diesen Bänken kommen zunächst sandige Tone, dann der Eisensandstein.

Die Schichten 13—15 sind durch Anlegen einer Schürfung auf der Terrasse oberhalb der Eisensandstein-Brüche aufgeschlossen worden; die Mächtigkeit der Tone Nr. 12 ist mittels Horizontalglases festgestellt. Die Lagen 5—11 sind an dem eben genannten Fahrweg entblößt und die tiefsten Schichten (1—5) wurden bei Anlage eines Hopfengartens jenseits des Bächleins, das neben dem Fahrweg herabfließt, bloßgelegt.

(Profil Tiefenstürmig siehe S. 19.)

Erläuterungen.

I. Callovien. Die verhältnismäßig geringe Mächtigkeit der Callovien-Tone dürfte hier auf Auspressung durch die darüber liegenden Weißjura-Massen zurückzuführen sein; es deutet auch die bereits erwähnte Verrutschung auf eine nachträgliche Störung in der Lagerung. Trotzdem konnten die Geröll-Lagen 12 und 13 durch eine 2 m tiefe Grabung nachgewiesen werden. Die darunter liegenden Tone ergaben zwar nur wenige, aber um so wertvollere Stücke:

Cosmoceras Jason Rin.
Kepplerites cf. calloviensis Sow.

1) Th. Schroeter, Über die Juraformation in Franken, Bamberg 1861. S. 111.
<table>
<thead>
<tr>
<th>Zone</th>
<th>Nr.</th>
<th>Ausbildung der Schichten</th>
<th>Mächtigkeit m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peltoceras TRANSVERSARIUM</td>
<td>11</td>
<td>Gelblich-grauer Mergel mit gelben glaukonitischen Kalkbrocken. Perispäniten aus der Gruppe des P. plicatilis.</td>
<td>0.25</td>
</tr>
<tr>
<td>Geröll-Lagen</td>
<td>12</td>
<td>Blaugrauer Ton mit Phosphat-Geröllchen.</td>
<td>ca. 0.50</td>
</tr>
<tr>
<td>Cosmoceras Jason</td>
<td>13</td>
<td>Grauer Ton voll von Glaucokit-Körnchen.</td>
<td>0.20</td>
</tr>
<tr>
<td>Macrocephalites macrocephalus</td>
<td>10</td>
<td>Brauner Ton voll von Brauneisen-Oolith-Körnern; stellenweise mit kleinen Gipskriställchen durchsetzt. Mit Schalenbruchstücken großer Perispäniten, die häufig phosphoritische Steinkerne umschließen.</td>
<td>0.20</td>
</tr>
<tr>
<td>Oppelia aspidoides</td>
<td>9</td>
<td>Blaugraue, in verwittertem Zustand dunkelbraune oolithische Kalkbank, sehr hart, mit muscheligen Bruch. Oppelia aspidoides und O. fusca sehr häufig.</td>
<td>0.15</td>
</tr>
<tr>
<td>P. Parkinsonii</td>
<td>8</td>
<td>Grauer Ton; Parkinsonia sp. ferruginea als phosphoritischer Steinkern.</td>
<td>0.10</td>
</tr>
<tr>
<td>Stephanoceras Humphriesianum</td>
<td>6</td>
<td>Graue harze Kalkbank mit körniger Bruchfläche, enthält Nester von Oolithkörnern und viele weißliche Muschelschalen-Trümmer. Stephanoceras Humphriesianum.</td>
<td>0.20</td>
</tr>
<tr>
<td>Somnifer Sowerbyi</td>
<td>5</td>
<td>Graue Muschelkalkbank voll von Muschelschalen-Bruchstücken, mit kleinen Oolithkörnern. Kleine Sonninien häufig.</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Blaugrauer Kalkstein, voll von Muschelschalenresten; das verwitterte Gestein ist sandig und rostfarben. Durchzogen von Büschen der Scrupula socialis; Eoceriten-Bruchstücke; Trigonia costata in großen Exemplaren.</td>
<td>0.10</td>
</tr>
<tr>
<td>Harpoceras Murchisonae</td>
<td>3</td>
<td>Unterste fossilführende Bank: grauer sehr sandiger Kalkstein mit Muschelbruchstücken und Geröllen von Kalksandstein und Eisensandstein (Grundkonglomerat).</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Gelbräuniger, sandiger Ton.</td>
<td>1—2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Liegendes: Eisensandstein.</td>
<td></td>
</tr>
</tbody>
</table>
Durch Sammeln der aus den Tonen ausgewitterten und lose herumliegenden Goldschnecken wurden folgende Arten erhalten:

Macrocephalites tamidus SCHLTH.
Perisphinctes euryptychus NEUM.
 sp. cf. *Per. Steinmanni* PAR.
 (PARONYA-BOINARELLI, Callovien inférieur de Savoie Taf. IX Fig. 2.)
Hectoceras hectaricum REN.

Unter den Perisphincten kommen hier verhältnismäßig große Exemplare vor; die größten haben Durchmesser von 6 cm; ähnlich die Macrocephalen, die eine Größe von 5 cm erreichen können.

Das Liegende dieser Tone bildet die hier 0,2 m mächtige phosphoritische Facies der Macrocephalen-Tone. Ähnlich wie am Leyerberg kommen auch hier dunkle phosphoritische Steinkerne großer Perisphincten vor, die häufig noch mit den schönen weißen Kalkschalen der Ammonitengehäuse bedeckt sind. Neben diesen fand sich der Steinkern eines

Kepplerites sp. cf. *K. Goweriana* Sow.

Das Callovien besitzt also bei Tiefenstürmig folgende facielle Ausbildung:

<table>
<thead>
<tr>
<th>Callovien</th>
<th>Ornatentone</th>
<th>Zone des Cosmoceras ornatum, des C. Castor und C. Pollux</th>
<th>Gerölle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zonen des C. Jason</td>
<td>Zone des Macrocephalites macrocephalus</td>
<td>Phosphorite</td>
<td></td>
</tr>
</tbody>
</table>

II. Das Bathonien ist durch eine Kalkbank vertreten, welche

Oppelia aspidoides Opp.
 " *fusca* QUENST.

in großer Menge einschließt. Ob hier im Bathonien auch Tone mit phosphoritischen Steinkernen vorkommen, war nicht sicher nachzuweisen, doch ist es anzunehmen, daß nicht nur darüber solche liegen, sondern auch die darunter liegenden grauen Tone den schlecht erhaltenen phosphoritischen Steinkernen einer *Parkinsonia* enthielten, der nach seinem Habitus auf *P. ferruginea* OPP. schließen läßt.

III. Bajocien. 1) Zone der *Parkinsonia Parkinsonii*. Ebenso wie am Leyerberg erwiesen sich auch hier die zwischen Bathonien und *Humphriesianum*-Zone liegenden Tone fossiler. Es läßt sich daher das Vorhandensein dieser Zone vorläufig nur vermuten.

2) Die Zone des *Stephanoceras Humphriesianum* ist durch die am Westrand der Alb typische harte Kalkbank, in welcher sich auch hier das Leitfossil (*St. Humphriesi*) fand, repräsentiert.

3) Die Zone der *Sonninia Sowerbyei* ist in dieser Gegend gut entwickelt. Die Schichten 3—5 sind vermutlich durch Verwitterung der vom jenseitigen Talrand beschriebenen 80 cm mächtigen Kalkbänke hervorgegangen. Während dort die Bänke in frischem Zustand zu beobachten sind, wurden hier die in Ummenge vorhandenen Fossilien teilweise durch Verwitterung und Auswaschung freigelegt. Die obere Bank ist gekennzeichnet durch die kleinen Sonninien, die mittlere durch
die Büschel von *Serpula socialis*, die unterste durch das Grundkonglomerat. Eines der darin eingeschlossenen Eisensandsteingerölle enthält mehrere Exemplare des *Pediculus personatus* Ziet.

Der Übergang zur Zone des *Harpoceras Murchisonae* wird durch den gelbräunen sandigen Ton vermittelt. Darunter beginnen die Bänke des Eisensandsteins.

Das Profil Tiefenstürmig schließt sich eng an das folgende vom Friesener Berg an, das sich in einer Entfernung von 5½ km befindet.

Friesen.

Das Dorf Friesen liegt 5 km nordöstlich von der Bahnstation Hirschaid. Der Ort selbst steht auf der Grenzregion zwischen Opalinuston und Eisensandstein. Letzterer erhebt sich im Norden des Ortes als steiles Berggehänge, in das der zum Berg emporführende Fahrweg tief eingeschnitten ist. Verfolgt man diesen Weg, so findet man in seiner oberen Region die oolithischen Kalke des Bajocien anstehen und darüber die grünlich-grauen Tone des Callovians, aus denen häufig die glänzenden kleinen Ammoniten auswittern.

Da es im vorliegenden Fall darauf ankam, diese einzelnen Zonen zu gliedern, ihre Ausbildung kennen zu lernen und das Vorkommen bezw. Fehlen des Batohniens zu konstatieren, ließ ich an dem genannten Weg durch Grabungen Aufschlüsse herstellen, aus denen sich das folgende Profil zusammenstellen ließ:

Profil Friesen siehe S. 22.

Erläuterung zum Profil Friesen.

Die Ausbildung des Callovians und Batohniens an der Friesener Warte stimmt im allgemeinen mit derjenigen der bereits besprochenen analogen Schichten von Tiefenstürmig überein, ebenso verhält sich das Bajocien ganz ähnlich.

Die Zone der *Parkinsonia Parkinsoni* konnte auch hier wegen mangelhafter Funde noch nicht sicher festgestellt werden. Schäffer, welcher, wie bereits erwähnt, die Doggerschichten der Friesener Warte bis gegen Frankendorf hin genau untersuchte, sagt (Juraformation, S. 111): „doch fand ich den Ammonites Parkinsoni an dieser Lokalität nicht.“ Es scheint also hier diese Zone, ähnlich wie am Leyerberg, durch tonige Ablagerungen vertreten zu sein.

Die Zone des *Stephanoceras Humphriesianum* nimmt hier allmählich wieder ihre typische fränkische Ausbildung an. An Stelle der harten, schweren, von Bohr-
Die Ausbildung des oberen Brauen Jura im nördlichen Teile der Fränkischen Alb.

muskeln zerfressenen Bank, die noch auf der Höhe zwischen Frankendorf und Tiefenstürmig beobachtet werden kann, ist hier eine bereits etwas mergelige Kalkbank, die fossilreich (*Stephanoceras Humphriesianum, Belenites giganteus, Bivalven*) ist und leicht verwittert.

Profil Friesen.

<table>
<thead>
<tr>
<th>Zonen</th>
<th>Nr.</th>
<th>Ausbildung der Schichten</th>
<th>Mächtigkeit m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxford</td>
<td>15</td>
<td>Gelbliche, glaukonitische Weiβjuralkalke mit Perisphinctes plicatilis</td>
<td></td>
</tr>
<tr>
<td>Callovien</td>
<td>14</td>
<td>Blaugrüne Tone mit viel Glaukonit.</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Grünlichgelber Ton, schwach glaukonitisch mit Phosphorit-</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>geröll.</td>
<td></td>
</tr>
<tr>
<td>Cosmobojoceras Jacob</td>
<td>12</td>
<td>Gelbliche Tonschichten mit verkiisten Ammoniten. Obere</td>
<td>ca. 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lagen mit: Cosmobojoceras Jacob, Kepplerites falleriensis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Untere Lagen mit *Macrocephalites tumidus, Peris-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sphinctes caryophylus, P. funatus.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brauner oolithischer Ton mit Bruchstücken weißer Am-</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>monitenschalen.</td>
<td></td>
</tr>
<tr>
<td>Bathonien</td>
<td>10</td>
<td>Oberste Kalkbank, außen braun, innen blaugrau, mit Oppelia aspidoides.</td>
<td>0,15 bis 0,2</td>
</tr>
<tr>
<td>P. Parkinsonia?</td>
<td>9</td>
<td>Braune oolithische schiefreive Letten.</td>
<td>0,8</td>
</tr>
<tr>
<td>Stephanoceras Humphriesianum</td>
<td>8</td>
<td>Zweite Kalkbank; Verwitterungskruste braun, innen grau;</td>
<td>0,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mit Stephanoceras Humphriesianum und Muschel-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>schalen-Trümtern.</td>
<td></td>
</tr>
<tr>
<td>Sowerbyi</td>
<td>7</td>
<td>Dritte Kalkbank, frischer Bruch bräunlich-grau, körnig;</td>
<td>0,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mit kleinen Sowerbyi und vielen Schalen von Pecten</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Gelbraune Lettenlagen, stellenweise rostbraun gefärbt.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Kalksandsteinbank, durchzogen von Büscheln der *Sep-</td>
<td>0,15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pula socialis* und vielen Trümern von Muschel-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Brauner sandiger Ton.</td>
<td>0,40</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Blaugrauer Kalksandstein.</td>
<td>0,15</td>
</tr>
<tr>
<td>Harpoceras Murchisonae</td>
<td>2</td>
<td>Sandige Tonlagen, oben rotbraun, unten blaugrau.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Eisensandstein im Liegenden.</td>
<td></td>
</tr>
</tbody>
</table>
Die Zone der **Sonninia Sowerbyi** ist hier besonders mächtig entwickelt. Die bei Tiefenstürmung noch zusammenhängenden Bänke sind hier durch Tonlagen getrennt, gleichen aber hinsichtlich ihrer Fauna der obengenannten Lokalität. Ein Verzeichnis derselben gibt Schröfer bei Aufzählung der Fossilien aus den „Schichten mit Belemnites giganteus“ (l. c. S. 111, 112). Die oberste Bank (7) ist reich an kleinen Sonninien, sie lassen sich jedoch nur schwer aus dem harten und zähen Gestein lösen. Einige verhältnismäßig gut erhaltene Exemplare wurden bestimmt als:

Sonninia Tessoniiana QUENST.

(QUENSTIJIT, Ammorniten Taf. 63 Fig. 7) engnähliche Form, die deutlich die einfache Lobenlinie zeigt.

Sonninia cf. corrugata Sow. sp.

(HAUG: Etude sur les Amm. des étages moyens du system jurassique; 2ere Note: Genre Sonninia BAYLE 1879, Taf. VIII, f. 1a, b).

Sonninia sp.

Kleines, feinrippiges Exemplar. Lobenlinie zeigt den Charakter der **Sonninia pinguis** ROEMER sp. (HAUG, Études, I et II Genres Sonninià et Witchellia. Paris 1893, S. 289 Fig. 3).

Zone des Harpoceras Murchisonae. Als Schröfer sein Profil aufstellte, waren die einzelnen Schichten bei Friesen offenbar noch besser als heute aufgeschlossen. So konnte er in den jetzt durch Erdrutschung verschütteten Steinbrüchen diejenigen Eisensandsteine, die nach oben abschließende Muschelbank mit *Pecten personatus*, *Aeicula elegans* und *Gervillia gracilis* beobachten (l. c. S. 104). Jetzt ist diese Bank nur noch in einem kleinen Steinbruch aufgeschlossen, der an dem von Stackendorf nach dem Kautschenberg führenden Weg gelegen ist. Die Fortsetzung dieses Weges bildet, was hier nebenbei erwähnt sein mag, ein gutes Profil, in dem die **Sowerbyi**, *Humphriesianum*- und *Aspidoides*-Zone anstehend zu beobachten ist; die Ausbildung der einzelnen Schichten entspricht derjenigen des Profls Tiefenstürmig.

Im weiteren Verlauf des Jurasteillandes gegen Norden hin sind keine brauchbaren Aufschlüsse. Es führen zwar mehrere Straßen auf das Juraplateau, an deren Böschungen man die anstehenden Schichten vermuten könnte; die Untersuchung dieser Stellen verlief jedoch meist resultlos.

Ludwag.

An der Straße, die von Scheßlitz und Zeckendorf kommend, am Fuß der durch das Schloß Giech und die Gügelkapelle gekrönten Jura-Ausläufer vorüberführt und bei Ludwag das Alpplateau erreicht, wurden im Jahr 1906 vorübergehend größere Aufschlüsse untersucht. Es soll deshalb hier kurz davon die Rede sein.

Zunächst ist dort, wo die Straße über die obere Region des Eisensandsteins führt, in dem Steinbruch links im Wald besonders schön die „Muschelbank“ als oberstes Glied der *Murchisonae*-Zone zu beobachten. Über ihr liegen in dem Verwitterungsschutt zahlreiche Bruchstücke aus der Kalksandsteinbank der *Sowerbyi*-Zone. Tritt man aus dem Wald, so hat man die flache geneigte ausgedehnte Terrasse der oberen Braunjura-Schichten als ödes „Gemeindeland“ vor sich. Sie wird umgrenzt durch die steilen weißen Felswände der Werkkalke.

Im Jahre 1906 wurde die in der Nähe der Straße auf dem Ornatenton entspringende Quelle für die Wasserversorgung der Gemeinde Ludwag gefasst. Die Grabarbeiten an der Quelle ergaben, daß der Weißjurasschutt hier ca. 4 m mächtig ist, erst jenseits (im Norden) der Straße wurde in den Rohrgräben das anstehende Callovien erschlossen.
Die oberen glaukonitischen Lagen enthielten, wie zu erwarten war, Phosphorit-Gerölle, die indessen verhältnismäßig klein waren; die tieferen Tonlagen lieferten ein reiches Material an sehr schön erhaltenen verkiesten Ammoniten. Aus den oberen Lagen sind zu nennen:

Cosmoceras Jason Rein.
(Das im paläontologischen Teil abgebildete Exemplar ist diesem Fundplatz entnommen.)

Reineckia anceps Rein.
Kepplerites cf. callociensis Sow.

Die tieferen Lagen enthielten:

Macrocephalites macrocephalus Schltr.
" lamidas* Rein.
" Herveyi Sow.

Perisphinctes euryptychus Neum.
(ist die häufigste *Perisphincten*-Art, die hier vorkommt.)

Perisphinctes sp. aus der Gruppe des *Per. variabilis* Lah.
(Lahusen, Rjasan Taf. X Fig. 4.)

Perisphinctes subtilis Neum.
(Rein.)

Perisphinctes sp. cf. *Per. Steinmanni* PAR.

(Pardon-Bonarelli, Callovien inférieur de Savoie, 1895, Taf. IX Fig. 2.)

Perisphinctes sp. cf. *Per. curvicosta* Neum.
(Die vorliegenden Stücke haben Ähnlichkeit mit der Abbildung bei Neumayr, Taf. XII Fig. 2, nicht aber mit dem in der Münchener Sammlung aufbewahrten Original, dessen Flanken mehr abgeplattet sind, als dies die Abbildung erkennen läßt.)

Perisphinctes funatus Opp.

Hecticoceras hecticum Rein.

Wurde in so vielen Exemplaren gefunden, daß es möglich war, die im paläontologischen Teil durchgeführte Einteilung in drei Varietäten vorzunehmen. Ebenso stammt das dort abgebildete Exemplar von dieser Lokalität.

Hecticoceras lunula Rein.

Proplannilites cf. subcon truncatus TEISS.

(Teissayre, Proplanulites novum genus. Krakau 1887. Taf. IV Fig. 11a, b.)

Belemmites calloviensis Opp.

Auffallend ist, daß bei den Belemniten, die sich in den schiefen, unverletzten Tonlagen vorfanden, nur das Rostrum aus dunklem spärlichen Kalk besteht. Während das Phragmocon pyritisch ist und trotzdem noch ganz normal im Rostrum steckt. Das breite Ende des Phragmocons ist gewöhnlich zersprengt, durch die Risse hat sich eine schwammig aufgequollene Pyritmasse herausgepreßt, ähnlich wie man das an den Wohnkammern verkiester Ammoniten beobachten kann.

Durch Fossilfunde ist also hier das Vorhandensein der Geröll-Lagen, der Zone des *Cosmoceras Jason* und derjenigen des *Macrocephalites macrocephalus*, letztere beide mit verkiesten Ammoniten, nachgewiesen.

Den Aufschluß der tieferen Schichten konnte ich leider nicht mehr beobachten, da derselbe nicht gleichzeitig mit dem beschriebenen gemacht wurde.

Würgau.

Das Juraprofil, welches sich an der von Bamberg über Scheßlitz nach Hollfeld führenden Poststraße oberhalb Würgau findet, wurde sowohl von Gümbel als
von Schröfer\(^{1}\) erwähnt; von letzterem Autor in der Beschreibung der Fränkischen Alb, wo sich auch eine Abbildung der Würgauer Steige findet (S. 557). Vor etwa vier Jahren wurde die an dem steil ansteigenden Jurahang hinaufführende Straße umgebaut. Durch die hiezu nötigen Kunstabarten wurden leider die früher vermutlich besser sichtbaren Braunjura-Schichten verdeckt, so daß nur noch die Muschelbank des oberen Eisensandsteins anstehend beobachtet werden kann. Außerdem sind die Tone durch Kalktuflagen verdeckt. Das darüber folgende Weißjura-Profil gehört noch jetzt zu einem der schönsten im Frankenjura.

Im oberen Dogger beobachteten seinerzeit Schröfer und Gümbel: die phosphoritischen Gerölle und darunter die Tone mit verkisten Ammoniten (Cosmoceras Jason, Hecticoeratems, Macrocephalen und Perispiketen). Die Ausbildung stimmt also mit derjenigen der zuletzt beschriebenen Profile überein.

Uetzing.

Erläuterungen.

\(^{1}\) Schröfer, Die Lacunosa-Schichten von Würgan (VI, Bericht der naturforsch. Ges. in Bamberg 1863).
Profil Uetzing

<table>
<thead>
<tr>
<th>Zonen</th>
<th>Nr.</th>
<th>Ausbildung der Zonen</th>
<th>Mächtigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peltoceras transversarium</td>
<td>16</td>
<td>Gelbe glaukonitische Kalkbank; Perisphinctes plecatilis.</td>
<td>0,25 bis 0,30</td>
</tr>
<tr>
<td>Geröll-Lagen</td>
<td>15</td>
<td>Grünlichgelber glaukonitischer Ton; Perisphinctes plecatilis in Form schwächerer phosphoritischer Steinkerne.</td>
<td>0,05</td>
</tr>
<tr>
<td>Cosmoceras Jason</td>
<td>14</td>
<td>Dunkelgrauer Ton, etwas glaukonitisch mit vielen auf-</td>
<td>0,10 bis 0,20</td>
</tr>
<tr>
<td>Callovien</td>
<td></td>
<td>großen Phosphoritgeröllen, Ammonitenreste stark abgerollt und klein:</td>
<td></td>
</tr>
<tr>
<td>Macrocephalites macrocephalus</td>
<td>13</td>
<td>Cosmoceras Jason (sehr häufig); Reineckia aniceps (Ammoniten verkiest).</td>
<td>0,50</td>
</tr>
<tr>
<td>Bathonien</td>
<td>12</td>
<td>Graue geschieferte Tonlagen mit verkiessten Ammoniten:</td>
<td>9</td>
</tr>
<tr>
<td>Oppelia aspidoides</td>
<td></td>
<td>Macrocephalites tunicidus, M. macrocephalus, Perisphinctes eurypleuchus, P. funatus, Kepplerites cf. calloviensis, Hecticoceras kaekovense.</td>
<td></td>
</tr>
<tr>
<td>Parkinsonia Parkinsoni</td>
<td>11</td>
<td>Grauer geschiefeter Ton mit Abdrücken und Schalen-</td>
<td>0,56</td>
</tr>
<tr>
<td>Stephanoceras Humphriesia</td>
<td></td>
<td>bruchstücken großer Perisphincten und Macrocephalen;</td>
<td></td>
</tr>
<tr>
<td>Sonninia Sowerbyi</td>
<td>10</td>
<td>phosphoritische Steinkerne von Ammoniten:</td>
<td>0,70</td>
</tr>
<tr>
<td>Balnoceras Marchisonae</td>
<td>9</td>
<td>Macrocephalites macrocephalus, M. tunicidus, Perisphinctes funatus.</td>
<td>0,15</td>
</tr>
<tr>
<td>Bajocien</td>
<td>8</td>
<td>Grauer Ton.</td>
<td>0,50</td>
</tr>
<tr>
<td>Soninna Sowerbyi</td>
<td>6</td>
<td>Graue und braune Tonlagen mit Phosphoritknollen.</td>
<td>2,5</td>
</tr>
<tr>
<td>Bajocien</td>
<td>5</td>
<td>Kalksandstein-Bau: Boloceras giganteus, Setaphas socialis.</td>
<td>0,15 bis 0,50</td>
</tr>
<tr>
<td>Balnoceras Marchisonae</td>
<td>4</td>
<td>Graue und braune Tone mit feinen Glimmerblätchen.</td>
<td>1</td>
</tr>
<tr>
<td>Bajocien</td>
<td>3</td>
<td>Mehrere Lagen dünnbankigen Eisensandsteins mit Ton-</td>
<td>0,20</td>
</tr>
<tr>
<td>Bajocien</td>
<td>2</td>
<td>Graublauer Ton mit Glimmerblätchen.</td>
<td>0,40</td>
</tr>
<tr>
<td>Bajocien</td>
<td>1</td>
<td>Eisensandstein im Liegenden.</td>
<td></td>
</tr>
</tbody>
</table>
A. Castor und A. Pollux angibt. Ebenso finden sich in den Gümberschen Profilen von Uetzing und Umgebung (Bavaria III, S. 796; Geologie von Bayern II, S. 877; Frankenjura S. 552) die verkiesten Formen der Ornamentone aufgezählt.1

Zunächst wurde unter den glaukonitischen Weißjurakalken die Glaukonit- schicht erschlossen. Sie ist hier viel geringer entwickelt (5 cm) als an den weiter südlich gelegenen Lokalitäten, enthält auch weniger Glaukonit. Bemerkenswert sind die phosphoritischen Steinkerne von \textit{Perisphinctes plecatillis}, die in derselben in Menge verkommen. Sie sind zerdrückt und stark durch das auf dieser Schicht zusammensickernde Wasser angefressen. Merkmale, die auf eine Abrollung schließen

1 Der scharfen Beobachtung Schütters konnte es nicht entgehen, daß die verkiesten Ammoniten des unteren Callovien nur am Westrand der Alb, diejenigen des oberen Callovien (Ornamentone) nur am Ostrand der Alb vorkommen. Es sagt hierüber (Juraformation, S. 60): „Seit Reinerees Zeit wurde eine Trennung der Schichten nach Leitmuscheln nicht vorgenommen, wiewohl sich zwei Zonen unterscheiden lassen, nämlich:

1) Zone mit \textit{Ammonites macrocephalus} und
2) „ „ \textit{Ammonites aniceps}.

An einer Lokalität habe ich beide Horizonte noch nicht zusammen angetroffen, sondern jede dar- selben einzeln an verschiedenen Lokalitäten; und zwar habe ich gefunden, daß die Zone des \textit{A. macrocephalus} weit mehr verbreitet ist, als die des \textit{A. aniceps}, welche ich nur von Rabenstein und Trockau kenne, während erstere an vielen Plätzen am Ostrand des Jura zwischen Forchheim und Lichtentalers zutage tritt."

Die Ausbildung des oberen Brauen Jura im nördlichen Teile der Fränkischen Alb.

ließen, zeigen sie dagegen nicht, wie das bei den tiefer liegenden Phosphoriten des Ornatentons der Fall ist.

Dann kamen — scharf nach oben und unten durch die dunkle Farbe getrennt — graue Tone mit vieler Phosphoritgerölle von Nußgröße. Letztere sind innen schwarz und außen von einer gelben Verwitterungskruste überzogen. Die Ammonitenreste sind gewöhnlich sehr stark abgeschliffen, trotzdem konnten noch folgende Arten erkannt werden:

Cosmoceras sp. aus der Gruppe des C. Pollux Rein.
C. sp. cf. C. Jason Rein.
Stephanoceras coronatum BRUG.
Reineckia Fraasi Opp.
Reineckia sp.
Hecticoceras krakowiense NEUM.
Hecticoceras sp.

(Neun schlecht erhaltene Stücke, welche eine Bestimmung der Art nicht mehr gestatten.)

Unter dieser dunklen Tonlage kam der geschieferte Ornatenton mit seiner typischen gelblich grauen Farbe und den teilweise verrosteten Ammoniten auf den Schichtflächen zum Vorschein. Er erwies sich verhältnismäßig reich an verkiessten Ammoniten. Es ist hier als besonders wichtig zu erwähnen, daß diese Tone bis auf eine Tiefe von 50 cm nur folgende Ammonitenarten ergaben:

Cosmoceras Jason Rein.
Reineckia anceps Rein.

Während die erstgenannte Art in mehreren gut erhaltenen Stücken gefunden wurde, kam von Reineckia anceps nur ein Exemplar zum Vorschein. Die tieferen Lagen mit Cosmoceras Jason enthielten bereits Perisphinctes euryptychus NEUM. Erst in der Tiefe von 50 cm traten im Ornatenton kleine verkiesste Macrcephalen zus.

ammen mit Perisphinctes euryptychus, P. subtilis und Hecticoceras heticum auf. Diese Lagen wurden noch bis auf eine Tiefe von ca. 1 m (von der oberen Grenze des Ornatentons ab) aufgeschlossen und nachdem sich in denselben immer nur die vier genannten Arten vorfanden, wurde die Grabung eingestellt. Kepplerites callov.

iensis kam dabei nicht zum Vorschein, was wohl nur zufällig ist. Bei Ludwag wurde er der oberen Macrocephalen-Region in mehreren Stücken entnommen.

Während die bisher genannten Schichten (12—16) im Nordwesten des Dorfes Utzing aufgeschlossen wurden, fügt die Stelle für die folgenden Schichten 1—12 an der Hirtenleite im Südosten des Dorfes, und zwar an dem nördlichsten Ausläufer die- es Hügels.

Die untere Region des Callovien (Schicht 11) besteht ebenso wie bei Profil Tiefenstürmig und Friesen aus grauen schiefbrigen Tonen, die auf den Schichtflächen die plattgedrückten Formen von Perisphinctes und Macrocephalen erkennen lassen; nur selten sind die Ammoniten als phosphoritische Steinkerne enthalten, die übrigens für eine Bestimmung der Art zu schlecht erhalten sind. Darunter folgen dunkle Tone als Übergang zum Bathonien.
II. Das Bathonien ist als oolithische Kalkbank ausgebildet und schließt häufig *Oppelia aspidoides* Orr. und *O. fusca* Qu. ein.

Bezüglich der faciellen Ausbildung der bereits beschriebenen Zonen ergibt sich folgendes Schema:

<table>
<thead>
<tr>
<th>Oxford</th>
<th>Zone des Perisphinctes plicatilis</th>
<th>Kalk</th>
<th>Phosphorite</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zone des Cosmoceras ornatum, C. Castor und C. Pollux</td>
<td>Phosphorit-Gerölle</td>
<td>Pyrite</td>
</tr>
<tr>
<td></td>
<td>Zone des Cosmoceras Jason</td>
<td>Pyrite</td>
<td>Phosphorite</td>
</tr>
<tr>
<td></td>
<td>Zone des Macrocephalites macrocephalus</td>
<td>Phosphorite</td>
<td>Kalk</td>
</tr>
<tr>
<td></td>
<td>Zone der Oppelia aspidoides</td>
<td>Kalk</td>
<td></td>
</tr>
</tbody>
</table>

Bemerkenswert an demselben ist, daß die Phosphorite bis hinauf ins Oxford reichen, eine Erscheinung, die auch beim folgenden Profil (Wildenberg) beobachtet wurde.

Die unter diesen Oolithgesteinen liegenden Tone schließen häufig Phosphoritknollen ein. Dieselben erwiesen sich hier fossilreicher, doch beweist ein Ammonitenfund, der in den analogen Schichten des folgenden Profiles (Wildenberg) gemacht wurde, daß diese phosphoritischen Lagen der *Sowerbyi*-Zone angehören. Ebenso ist zu derselben die darunter liegende, von unzähligen Röhren der *Serpula socialis* durchzogene, bläuliche Kalksandsteinbank zu zählen.

Nach unten kommen zunächst noch glimmige Tonlagen mit Sandsteinbänkchen und dann folgt als Liegendes der typische Eisensandstein.

An Stellen, wo die eine oder andere Schicht entblößt war, machte ich die Wahrnehmung, daß weder in der Fauna, noch in der Facies sich Verschiedenheiten gegenüber dem Profil Uetzing geltend machen.

Die nordöstliche Jurascholle bei Weißenbrunn und Kirchleus.

Jenseits des Maintales findet sich zwischen Kulmbach und Kronach noch eine Jurascholle, die ihre Erhaltung dem Absinken an einer großen Verwerfungslinie (Kulmbacher Spalte GÜMBELS) verdankt.

Wildenberg.

Das Dorf Wildenberg liegt an der Südwestecke der kleineren Weißjurascholle. Das Dorf ist teilweise auf die durch die oberen Braunjura-Schichten gebildete Terrasse gebaut. Im Dorf selbst treten an einigen Stellen die oolithischen Schichten des oberen Bajociens zutage. Am höchsten Punkt des Dorfes (498 m) stehen die glaukonitischen gelben Weißjuraßkalke mit *Perisphinctes plicatilis* an, darunter gelbe mit Rostflecken durchsetzte Tone, die sich fossileer erwiesen. Die tiefer liegenden Schichten sind entblößt an dem Fahrweg, der um den Wachtelberg herum nach Weißenbrunn führt, unterhalb des Werkkalk-Steinbruches (ca. 1 km nordwestlich vom Dorf). Hier ließ ich einen 2 m tiefen Graben durch die Zonen des unteren Calloviums bis hinab zur Sowerbyi-Zone ausheben. Dabei ließ sich folgendes Profil beobachten.

(Profil Wildenberg siehe S. 81.)

Erläuterungen.

Das vorliegende Profil ist deswegen von großer Wichtigkeit, weil es Facies und Fauna der Braunjura-Schichten im äußersten Nordosten des Frankenjura kennen lehrt.

In der unteren Transversarium-Region (12) tritt hier wiederum die bereits bei Ützing aufgefundenene Eigentümlichkeit auf, daß die Phosphorite bis in diese Zone reichen. Die schönen glänzend schwarzen Stücke von *Perisphinctes plicatilis* liegen hier in dem bräunlichen glaukonitischen Mergel.
Profil Wildenberg

<table>
<thead>
<tr>
<th>Zonen</th>
<th>Nr.</th>
<th>Ausbildung der Schichten</th>
<th>Mächtigkeit (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxford</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peltoceras transversarium</td>
<td>14</td>
<td>Glaukonitische gelbhke Kalkbank mit Perisphinctes plicatilis, Aspidoceras perannulatum.</td>
<td>0.20 bis 0.50</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Graue glaukonitische Mergelschicht mit gelblichen glaukonitischen Kalksteinknoten.</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Braune Tonschicht mit phosphoritischen Steinkernen von Perisphinctes plicatilis.</td>
<td>0.20 bis 0.50</td>
</tr>
<tr>
<td>Ornamenton</td>
<td>11</td>
<td>Dunkelgrauer Ton, fossileer.</td>
<td>ca. 1.50</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Tonlagen, oben gelbbrun, nach unten bläulich, durchsetzt von rostfleckigen Partien; sie gehen allmählich über in den 3</td>
<td></td>
</tr>
<tr>
<td>Galloven</td>
<td>9</td>
<td>Hellgrauer Ton mit verkisten Ammoniten. Macrocephalites tumidus, Perisphinctes enpyrgius, P. fumatus, Hecticeras hecticum.</td>
<td>2</td>
</tr>
<tr>
<td>Macrocephalites macrocephalus</td>
<td>8</td>
<td>Brauner Ton, stark oolithisch mit Ammonitenabdrücke auf den Schichtflächen; oolithische Phosphorit-Konkre-</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tionen; phosphoritische Steinkerne von Perisphincten und Macrocephalens, Belonites calloviensis.</td>
<td></td>
</tr>
<tr>
<td>Bathonien</td>
<td>7</td>
<td>Oolithische Kalkbank; außen braun, frischer Bruch blaugran. Oppelia aspidoides in großen Exemplaren.</td>
<td>0.20</td>
</tr>
<tr>
<td>Oppelia aspidoides</td>
<td>6</td>
<td>Oolithischer Ton mit Trümmern weißer Ammonitenknochens, kleine Phosphoritkonkretionen. In der unteren Partie verrostete Stücke von Parkinsonia et ferruginea.</td>
<td>1.50</td>
</tr>
<tr>
<td>P. Parkinsoni</td>
<td>5</td>
<td>Oolithische Kalknergelschicht von zäher Struktur; vertikal zerklüftet. Oben: Parkinsonia Parkinsoni. Unten: Cosmomoceras bifurcatum, Stephanium Humphriesiannum; Unterseite mit Phosphoritknoten.</td>
<td>0.4</td>
</tr>
<tr>
<td>Stephanoceras Humphries- sianum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bajocien</td>
<td>4</td>
<td>Grauer Ton mit Phosphoritknoten; Sorninia Sowerbyi.</td>
<td>ca. 1</td>
</tr>
<tr>
<td>Sorninia Sowerbyi</td>
<td>3</td>
<td>Kalkbank, rauh und sandig; viele Bruchstücke von Muschel-</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>schalen. Trigonia costata, Serpula socialis.</td>
<td></td>
</tr>
<tr>
<td>Harpoceras Murchisoniae</td>
<td>2</td>
<td>Blaugrauer Ton, geht nach unten in sandige Tonnäkchen</td>
<td>ca. 3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Typischer Eisensandstein im Liegenden.</td>
<td></td>
</tr>
</tbody>
</table>

I. Calloviens. Die Ornamentone (10, 11) lieferten hier keine Fossilien. Auflfallend war zunächst das Fehlen der Phosphoritgerölle (die auf der Terrasse in
Die Ausbildung des oberen Braunen Jura im nördlichen Teile der Fränkischen Alb.

Menge herumliegenden Phosphoritknollen gehören der Sowerbyi-Zone an); sodann die Abwesenheit von Ammoniten-Arten der Ornata-Zonen. Die Erklärung hiefür ergab sich aus dem Vergleich mit den übrigen Profilen: Die Ammoniten der Ornata-
tone waren hier ursprünglich ebenso wie diejenigen der Macrocephalen-Zone als
pyritische Steinkerne vorhanden; die Phosphoritbildung trat erst gegen Ende der
Callovienzeit ein. Durch die vor Ablagerung der Weiβjura-Sedimente erfolgte Denu-
dation, die sich über den ganzen Frankenjura verfolgen läßt, wurden die tonigen
Schichten des Callovien bis hinab auf die Macrocephalen-Zone zerstört. Dabei
zersetzten sich die unbeständigen Pyrite und hinterließen nur noch die restigen
Partien, welche nun die Tone durchsetzen. An anderen Lokalitäten dagegen, wo
harte widerstandsfähige Phosphorit-Versteinerungen vorlagen, wurden dieselben nur
zerbrochen, abgestoßen und abgeschliffen und blieben als immerhin noch bestimm-
bare Reste erhalten.

Die über diesen zerstörten Tonen liegenden Phosphorit-Exemplare von *P. plicat-
ilis* zeigen keine Merkmale von Abrollung, wurden also erst nach der Denudation
abgelagert.

Unter den fossilreichen Tonen mit Rostflecken beginnen sofort die verbreitetsten
Stücke der Macrocephalen-Schichten (9). Von diesen sind zu nennen:

Macrocephalites timidus REIN.
Perisphinctes janatus Opp.
" euryptychus" Neum.
Hecticoceras hecticum REIN.
Oppelia suscostaria Opp.
Sphaeroceeras sp.
Cardioceras sp. cf. *Ammonites Chamassetti* d'ORB.

(Quesnedt, Jura Taf. 70 Fig. 21.) Es liegen nur einige kleine Bruchstücke vor.

Hamites sp.

Ebenfalls nur einige Bruchstücke. Die beiden letztgenannten Vorkommnisse
erinnern an die Macrocephalen-Tone des Leyerbergcs bei Erlangen.

Auch hier finden sich wiederum unter den Schichten mit verbreitetsten Ammon-
iten oolithische Tone mit phosphoritischen Steinern. *Belonmites calloriensis*
tritt darin in solchen Mengen auf, daß dadurch ganze Lagen gebildet werden.

II. Das Bathoniens ist zunächst durch eine oolithische Kalkbank vertreten,
in welche häufig große Exemplare von *Oppelia aspidoides* eingeschlossen sind.
Darunter folgen oolithische Tone mit kleinen Phosphorit-Konkretionen. Sie ent-
halten reichlich zerbrochene Ammonitensteine, die den von Quesnedt aus dem
schwäbischen Jura abgebildeten (Ammoniten Taf. 73 Fig. 4—16) ähnlich sehen.
Noch zu bemerken ist das Vorkommen verkister — aber meist stark zersetzter —
Stücke von Parkinsonien, die wohl zu *Parkinsonia ferruginea* gehören dürften.

III. Bajocien. Besonders günstig gestaltet sich hier der Aufschluß in den
oberen Lagen des Bajociens: Die Zonen der *Parkinsonia Parkinsoni* und des
Stephanoceras Humphriesianum bestehen hier aus einer 0.4 m mächtigen Kalk-
mergelbank (5). Diese hat sich, durch eine starke Tondecke vor der Verwitterung
geschützt, in ihrer ursprünglichen Form erhalten. Die Bank ist nicht in horizontaler,
sondern nur in vertikaler Richtung zerklüftet; die Verteilung der Ammoniten auf
dieselbe konnte genau festgestellt werden: *Parkinsonia Parkinsoni* lag in mehreren
Exemplaren auf der Oberfläche der Bank. Die nicht seltenen Bifurcaten stecken
im oberen Drittel; darunter, etwa in der Mitte der Bank sind Austern so häufig.

Etwa 50 m von dieser Stelle entfernt durchschneidet der oben erwähnte Fahrweg diese Zone. Im Straßengraben bemerkt man die rostrotten, für das obere fränkische Bajocien so charakteristischen Kalkmergel. Hier, wo die Bank der Verwitterung zugänglich war, ist sie also zersetzt. Man kann aus dieser Beobachtung schließen, daß die Parkinsoni- und Humphriesianum-Zone dort, wo die roten Mergel vorkommen, ursprünglich als harte Steinbänke entwickelt waren, daß jedoch der starke Gehalt an Tonsubstanz ein Ausfrieren und Verwittern erleichtert und dann die Bänke zu den schiefwiegenden, ganz unregelmäßig geschichteten Lagen zerfallen, die zwar Fossilien von gutem Erhaltungszustand liefern, jedoch in Sammeln nach Horizonten sehr erschweren.

Die in der untersten Partie der Kalkmergelbank beobachteten Phosphorit-Knollen setzen in die tiefer liegenden Tone (4) fort. Sie sind hier sehr häufig und liegen als ausgewitterte Stücke in Gräben und Wasserrissen umher. Bei oberflächlicher Beobachtung könnte man dieselben für Gerölle halten, wie sie anderwärts im Ornamenton vorkommen. Sie unterscheiden sich aber durch ihre rein schwarze Farbe von den grauen Stücken des Callovien; außerdem zeigen sie nicht die für letztere so charakteristischen abgeschliffenen Flächen. In einem dieser Knollen wurde ein Exemplar von *Sonninia Sowerbyi* Mill. gefunden.

Die darunter liegende Kalkbank (3) gleicht der analogen Schicht am Westrand der Alb; sie ist von den Büscheln der *Serpula socialis* durchzogen und schließt Lagen von Muschelschalen-Bruchstücken ein. Ein kleines schlecht erhaltenes Exemplar eines *Sphaeroceras* ist der einzige Ammonit, den diese Bank enthielt.

Es folgen nun Tone (2), etwa 3 m mächtig, dann der Eisensandstein (1). Die am Westrand der Alb beobachtete Muschelbank ist auch hier vorhanden. Jedoch ist sie hier nicht als harte Kalkbank ausgebildet; ihre Kalkbestandteile sind ausgelaugt; das Gestein besitzt infolgedessen viele Hohlräume, an deren Wänden sich die zartesten Zeichnungen der kleinen Trigonien (Tr. striata) und Pectenschalen (*P. personatus*) als Abdrücke erhalten haben. In der gleichen Ausbildung ist diese Bank auch am Cordigast zu beobachten.

Das Profil Wildenberg ist in Hinsicht auf die faciellen Verhältnisse eines der interessantesten. Es zeigt, wie die kalkigen Ablagerungen dreimal durch Phosphorite ersetzt werden; und in letztere schieben sich zweimal Pyrite ein. Folgendes Schema möge das darstellen:

(Schema siehe S. 34.)

Wie bereits oben erwähnt, findet sich auch am Kirchleuser Knob ein Aufschluß in den Braunjura-Schichten, und zwar am Weg von Kirchleus nach Schimmendorf. Hier ließ sich aus den zu Tag tretenden Schichten folgendes Profil zusammenstellen:

(Profil Kirchleus-Schimmendorf siehe S. 34.)

Man darf wohl voraussetzen, daß an dieser Stelle die Ausbildung der einzelnen Schichten nicht bedeutend von derjenigen des nur 3,5 km entfernten Profils bei Wildenberg abweicht; noch weniger ist anzunehmen, daß hier einzelne Zonen
Die Ausbildung des oberen Braunen Jura im nördlichen Teil der Fränkischen Alb.

ganz fehlen. Es mag deshalb der Vergleich zwischen beiden Profilen zeigen, wie wenig man nach den oberflächlich vorhandenen Schichten deren tatsächliche Anordnung und Lagerung beurteilen kann.

<table>
<thead>
<tr>
<th>Zonen</th>
<th>Facies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perisphinctes plicatilis</td>
<td>Kalk</td>
</tr>
<tr>
<td></td>
<td>Phosphorit</td>
</tr>
<tr>
<td>Cosmoceras ornatum, C. Castor und C. Pollux</td>
<td>Pyrit</td>
</tr>
<tr>
<td>Cosmoceras Jason</td>
<td>Phosphorit</td>
</tr>
<tr>
<td>Macrocephalites macrocephalus</td>
<td>Phosphorit</td>
</tr>
<tr>
<td>Oppelia aspidoides</td>
<td>Kalk</td>
</tr>
<tr>
<td></td>
<td>Phosphorit</td>
</tr>
<tr>
<td></td>
<td>Pyrit</td>
</tr>
<tr>
<td>Parkinsonia ferruginea</td>
<td>Phosphorit</td>
</tr>
<tr>
<td>Parkinsonia Parkinsoni</td>
<td>Kalk</td>
</tr>
<tr>
<td>Stephanoceras Humphriesianum</td>
<td>Phosphorit</td>
</tr>
<tr>
<td>Sonnia Sowerbyi</td>
<td>Kalk</td>
</tr>
</tbody>
</table>

Profil Kirchleus—Schimmendorf.

<table>
<thead>
<tr>
<th>Zonen</th>
<th>Nr.</th>
<th>Ausbildung der Schichten</th>
<th>Mächtigkeit m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelt. transvers.</td>
<td>8</td>
<td>Gelbe Glaukonsitische Kalke mit Perisphinctes plicatilis.</td>
<td></td>
</tr>
<tr>
<td>Maer. maer.</td>
<td>7</td>
<td>Graugelbe Tone mit verküsten Ammoniten der Macrocephalen-Zone.</td>
<td>5</td>
</tr>
<tr>
<td>Oppelia aspid.</td>
<td>6</td>
<td>Oolithische Kalkbank mit Oppelia aspidoides.</td>
<td>0,15</td>
</tr>
<tr>
<td>P. Parkinsoni</td>
<td>5</td>
<td>Oolithische Kalkmarge, rostrot, unregelmäßig geschiefert. Parkinsonia Parkinsoni Stephanoceras Humphriesianum.</td>
<td>0,80</td>
</tr>
<tr>
<td>Steph. Humph.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harpoceras Marchisonae</td>
<td>4</td>
<td>Graue glimmerreiche Schiefertone.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Gelbe Sandsteinbank.</td>
<td>0,40</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Rostrote, feinkörnige Sandsteinbank mit Abdrücken kleiner Bivalven. Pecten personatus, Trigonia striata. (Muschelbank.)</td>
<td>0,20</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Eisensandstein im Liegenden.</td>
<td></td>
</tr>
</tbody>
</table>
Der Ostrand des Frankenjura.

Die folgenden Profile gehören dem Ostrand des Frankenjura an. Die hier auftretenden oberen Braunjura-Schichten unterscheiden sich in mancher Hinsicht von den analogen Schichten des Westrandes; namentlich weicht das Callovien faunistisch und petrographisch ab.

Zunächst fällt bei den Macrocephalen-Tonen die geringe Mächtigkeit auf; während diese am Westrand durchweg etwa 10 m betrug, geht sie hier auf 1—2 m zurück. In den natürlichen Aufschlüssen ist gewöhnlich nichts von dieser Zone zu bemerken, erst durch systematische Grabungen sind die oolithischen Tone mit oolithischen Phosphoriten und den charakteristischen Ammoniten-Arten zu finden.

Der auffallendste Unterschied liegt aber in dem Wechsel der verkiesten Fauna. Am Westrand findet man überall, wo die Tone des Callovien frei liegen, die kleinen verkiesten Macrocephalen und Perisphincten; hier am Ostrand ist von diesen Arten nichts zu sehen, dagegen kann man hier die kleinen Goldschnecken des Ornaten-tons oft in Menge anlesen. Die charakteristischen Vertreter dieser Fauna sind: Cosmoceras Castor, C. Pollux, C. Jason; Reineckia anceps, R. Fraasi; Strigoceras pastulatum; Stephanoceras coronatum; Oscopychus refractus und außerdem eine Reihe von Hecticoceraten.

Es wurde deshalb bei den folgenden Profilen hauptsächlich Wert auf die Gliederung des Callovien gelegt, während Bathonien und Bajocien nur dort, wo besonders schöne Aufschlüsse oder Reichtum der Fauna angetroffen wurden, Berücksichtigung finden.

Profil Kasendorf.

1) Da das Profil Kasendorf erst kurz vor Drucklegung der vorliegenden Abhandlung aufgenommen wurde, konnten seine einzelnen Schichten nicht mehr in das bereits abgeschlossene „Schematische Profil vom Ostrand der Alb“ eingezeichnet werden. Übrigens entsprechen die für diese Gegend vorausberechneten Verhältnisse, wie sie die Profilzeichnung darstellt, den später angetroffenen Tatsachen, nur in der Mächtigkeit der einzelnen Schichten bestehen kleine Differenzen.
<table>
<thead>
<tr>
<th>Zonen</th>
<th>Nr.</th>
<th>Ausbildung der Schichten</th>
<th>Mächtigkeit m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxford</td>
<td>19</td>
<td>Hangendes: Werkkalke.</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Glaukonitische weißliche Mergel.</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Zwei glaukonitische harte Kalksteinbänke.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>Glaukonitischer hellgrauner mergeliger Ton.</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Dunkelgrauer Ton mit Phosphoritgeröll. Cosmoceras ornatum, C. Duncani; Perisphinctes sulciferus.</td>
<td>1</td>
</tr>
<tr>
<td>Geröll-Lagen</td>
<td>14</td>
<td>Gelblich grauer Ton mit schlecht erhaltenen verkiesten Ammoniten der Ornaten-Zone.</td>
<td>0.50</td>
</tr>
<tr>
<td>Cosmoceras Castor und C. Pollux</td>
<td>13</td>
<td>Hellgrauner Ton, geschiefert mit verkiesten Ammoniten.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cosmoceras Castor, C. Pollux; Reineckia aniceps, R. Fraasi; Strigoceras punctulatum; Oceoptychus refractus; Stephanoceras coronatum.</td>
<td></td>
</tr>
<tr>
<td>Callovien</td>
<td>12</td>
<td>Geschieftert hellgrauner Ton mit weißen traubigen Kalkkonkretionen.</td>
<td>ca. 1</td>
</tr>
<tr>
<td>Cosmoceras Jason?</td>
<td>11</td>
<td>Fettiger, hellgrauer Ton mit phosphoritischen Steinkernen von Perisphincten.</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Oolithischer grauer mergeliger Ton mit oolithischen Phosphoritkonkretionen.</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Dunkler blaugrauer Tonmergel, oolithisch mit oolithischen Kalksteinknollen.</td>
<td>0.25</td>
</tr>
<tr>
<td>Bathi.</td>
<td>8</td>
<td>Zwei bis drei Lagen harter Kalkmergel-Gesteine; Außenseite gelb; frischer Bruch bläulich und körnig mit kleinen Oolithkörnchen; arm an Fossilien. Belennites gigantus, Ostrea Marshi.</td>
<td>0.20 bis 0.50</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Grauer oolithischer Tonmergel; stellenweise festgelb gefärbt durch zersetzte Oolithen. Belennites gigantus.</td>
<td>ca. 2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Ein bis zwei feinkörnige Kalksandsteinbänke mit Pecten demissus.</td>
<td>0.20 bis 0.30</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Blaugrauer fetter Ton mit schwarzen Phosphorit-Konkretionen.</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Grauer mergeliger Ton mit Belemniten. Knollen harten Kalksteins mit Crinoideen-Resten.</td>
<td>0.20 bis 0.50</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Rostbrauner, bröckeliger Mergel; feinsandig.</td>
<td>0.50 bis 0.70</td>
</tr>
<tr>
<td>Callovien</td>
<td>2</td>
<td>Hellgrauner Lettenschiefer, sandig.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Weißlicher feinkörniger Eisensandstein im Liegenden</td>
<td></td>
</tr>
</tbody>
</table>
Das vorliegende Profil ist eines der vollständigsten, das ich im Jura beobachten konnte. Der allerdings sehr enge Rohrgraben durchschneidet den Schichtenkomplex auf einer Länge von mehr als 100 m. Es konnten deshalb die einzelnen Schichten auf eine längere Erstreckung hin verfolgt werden. Dabei zeigte sich, daß die Mächtigkeit der einzelnen Schichten oft schwankt, was bei den zahlenmäßigen Angaben jeweils berücksichtigt ist. Leider erwiesen sich die Zonen des Bathoniens und Bajociens sehr arm an Versteinerungen, namentlich an Ammoniten. Doch konnte die Zugehörigkeit der Gesteine zu den einzelnen Zonen dadurch festgestellt werden, daß die petrographischen Merkmale mit den analogen Gesteinen fossilreicherer Plätze in der weiteren Umgebung übereinstimmen.

Über das Callovien ist folgendes zu erwähnen:

1) Zone des *Cosmoceras ornatum*. Als höchste Lage des Callovien wurden Tone mit Phosphoritgeröllen angetroffen. In ihnen lagen abgeschliffene, schwarze, phosphoritische Bruchstücke von Ammoniten, die folgenden Arten angehören:

Cosmoceras ornatum Schloth.
" *Duncanii* Sow.
Perisphinctes sulciferus Opp.
Hecticoceras pseudopunctatum Lahl.
Außerdem *Posidonomya ornati* Quenst.

Die genannten Ammoniten sind charakteristische Stücke der Ornatum-Zone. Bemerkenswert ist, daß die Übergänge zuweilen ockergelbe Partien anhaften. Es läßt dies erkennen, daß die Ammonitenanhänge teils als phosphoritische, teils als pyritische Steinkerne in dem tonigen Sediment gelegen waren. Nach der Analogie mit anderen Plätzen (z. B. Rüsselbach) zu schließen, hatte also hier die Verkiesung zur Zeit des *Cosmoceras ornatum* ihr oberes Ende erreicht. Die Ammoniten der zunächst darunter liegenden Tone (14) sind auf den Schichtflächen nur noch als zersetzte rostige Steinkerne vorhanden; diese Erscheinung wurde ebenfalls bei Profil Rüsselbach (Schicht 5) beobachtet.

Von den schlecht erhaltenen und schwer kenntlichen Ammonitenresten des Tones (Nr. 14) ist bemerkenswert:

Hecticoceras punctatum Stahl.

2) Zone des *Cosmoceras Castor* und *C. Pollux*. An dieser Lokalität tritt zum erstenmal im nordöstlichen Frankenjura die für diese Zone charakteristische Fauna auf. Sie erstreckt sich möglicherweise noch weiter nach Norden, wahrscheinlich bis in die Gegend von Zultenberg. Dort fanden sich jedoch keine Aufschlüsse, da die Braunjura-Terrasse teilweise durch Erosion verschwunden ist. Hier bei Kasendorf wurden folgende Arten gefunden:

Cosmoceras Castor Rein.
" *Pollux* Rein.
Reineckia anceps Rein.
" *Fraasi* Opp.
Strigoceras pustulatum Rein.
Stephanoceras coronatum Brug.
Oeoptychius refractus Rein.
Hecticoceras pseudopunctatum Lahl.
" *Brighti* Pratt.
3) Zone des Cosmoceras Jason. Die unter dem fossilreichen Ton der Castor-Pollux-Zone liegende Schicht (12) erwies sich an der Aufschlußstelle fossiler; da jedoch in der Umgebung einige verkiesete Stücke von C. Jason lose gefunden wurden und sich die Jason-Zone weiter im Süden von der Castor-Pollux-Zone trennen läßt, gehört ihr wahrscheinlich die Tonschicht 12 an.

Die Ausbildung der Schichten des Bathoniens und Bajociens ergibt sich aus der Profiltabelle, es ist daher nicht nötig weiter auf die tiefer liegenden Zonen einzugehen.

Die von mir gesammelten Ammoniten entsprechen sowohl dem Vorkommen von Kasendorf, wie demjenigen der Steinleite bei Melkendorf (nächstes Profil). Es ist deshalb nicht nötig hier eine Fossilliste zu geben, zumal da nur das lose Material gesammelt wurde.

Erwähnenswert ist, daß bei den Kletzhöfen die tiefer liegenden Zonen wieder fossilreicht sind: Die Macocephalen-Tone lieferten einen phosphoritischen Steinkern von Macrocephalites tumidus; die in Brotaib-förmige Knollen abgesonderten Oolithkalk der Bathoniens enthielten Oppelia aspidoides in einigen großen Exemplaren; in den darunter liegenden hellbraunen oolithischen Mergeln war Stephanoceras Humphriesianum und die Sowerbyi-Lagen schließen eine harte sandige Bank, voll von Muschelbruchstücken und mit Serpula socialis ein.

Erläuterungen zum Profil Steinleite.

Das auf der Steinleite erschlossene Profil läßt eine schöne ins Detail gehende Gliederung des Callovien zu:

1) Geröll-Lage. Unter der Glanoktonischiect (13) wurden zunächst die Tone (12) mit Phosphoritgeröllen angetroffen. Die Ammoniten fanden sich teils in den Konkretionen eingeschlossen vor, teils als zerbrochene Stücke mit deutlichen Merkmalen von Abrollung. Die Arten, denen sie angehören, sind:

Heeticoceras rossiiense Teiss.

„sp. cf. nodosulcatum Lahl.

Hectococeras rossiiense Teiss.
Profil Steinleite (2 km südöstlich von Lochau).

<table>
<thead>
<tr>
<th>Zonen</th>
<th>Nr.</th>
<th>Ausbildung der einzelnen Schichten</th>
<th>Mächtigkeit m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelt. transvers.</td>
<td>14</td>
<td>Gelbliche Kalke mit Perisphinctes plicatilis.</td>
<td></td>
</tr>
<tr>
<td>Geröll-Lagen</td>
<td>13</td>
<td>Grünlich-gelber Ton mit vielen Glaukonitkörnchen.</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Blaugrauer fetter Ton mit Phosphoritgeröllem; phosphoritische Steinkerne von Ammoniten: Cosmomeras ornatum, C. Duncani; Distichoceras bipartitum; Perisphinctes sulciferus, Hecticoceras.</td>
<td>ca. 1</td>
</tr>
<tr>
<td>Cosmomeras ornatum</td>
<td>11</td>
<td>Grauer Ton mit Ammoniten auf den Schichtflächen; Wohnkammern derselben meist aus Phosphor. Luftkammern aus Pyrit: Cosmomeras ornatum, C. Duncani; Perisphinctes sulciferus, viele Hecticoceras (cf. Fossil-Liste).</td>
<td>0.50</td>
</tr>
<tr>
<td>C. Castor und C. Pollux</td>
<td>10</td>
<td>Gelblicher Ton, oben mit unkommtlichen zersetzten, ursprünglich verkiessten Ammoniten, nach unten reich an verkiessten Stücken: Cosmomeras Castor; C. Pollux; Stephanoceras coronatum u. s. w. (cf. Fossil-Liste).</td>
<td>1</td>
</tr>
<tr>
<td>C. Jason</td>
<td>9</td>
<td>Gelb-grauer Ton; Ammoniten selten und meist zersetzte: Cosmomeras Jason; Reineckia anceps; Hecticoceras lomula.</td>
<td>0.50</td>
</tr>
<tr>
<td>Macrocephalites macrocephalus</td>
<td>8</td>
<td>Braune Tone, reich an großen Oolithkörnchen; oolithische Phosphoritkonkretionen. Macrocephalites lomula; Perisphinctes funatus als große phosphoritische Steinkerne.</td>
<td>ca. 1</td>
</tr>
<tr>
<td>Oppelia aspidoides</td>
<td>7</td>
<td>Oolithische Kalke, in große Brotdiaib-förmige Knollen abgesondert. Oppelia aspidoides.</td>
<td>0.15</td>
</tr>
<tr>
<td>Parkinsonia ferruginea</td>
<td>6</td>
<td>Dunkelbrauner Ton, voll von sekundär gebildeten Gipsnadeln, die mittleren Lagen enthielten einige verkiesste, aber stark zersetzte Stücke von Parkinsonia sp. cf. P. ferruginea.</td>
<td>0.80</td>
</tr>
<tr>
<td>P. Parkinsonia? Steph. Humphry.</td>
<td>5</td>
<td>Ein bis zwei harte Kalkkämke; Bruchfläche blaugrau; Oberfläche von Bohrmuscheln zerfressen.</td>
<td>0.20 bis 0.50</td>
</tr>
<tr>
<td>Bajocien</td>
<td>4</td>
<td>Dunkelgrauer Ton.</td>
<td>ca. 0.50</td>
</tr>
<tr>
<td>Sonningia Sowerbyi</td>
<td>3</td>
<td>Kalksondenstein-Rank mit Muschel-Bruchstücken; Serpula socialis.</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Dunkler Ton.</td>
<td>ca. 2.50</td>
</tr>
<tr>
<td>Harp. Marchis.</td>
<td>1</td>
<td>Eisensandstein im Liegenden.</td>
<td></td>
</tr>
</tbody>
</table>
Cosmoceras ornatum SCHLTH.

" Duncani Sow.

Cardioceras spec.
Zwei Stücke, die in Phosphoritknollen eingeschlossen waren; der für die Gattung charakteristische Kiel und der obere Teil der Planken ist erhalten; die übrigen Partien, die aus dem Knollen herausragten, sind abgestoßen, so daß nicht einmal die Weite des Nabels zu erkennen und eine Bestimmung der Art unmöglich ist.

Distichoceras bipartitum QU.
(QUENSTEDT, Ammoniten, Taf. 85 Fig. 25.)

Hectioceras krakoviense NEUM.
" punctatum ZIET.
" pseudopunctatum LAH.
" sp. cf. Ammonites hecticus compressus QU.
(QUENSTEDT, Ammoniten, Taf. 82 Fig. 32.)

2) (Eigentliche) Zone des Cosmoceras ornatum. Darunter folgten Tone (11) mit deutlichen Schichtflächen. Die zahlreich vorhandenen Ammoniten lagen meist lose auf letzteren, seltener hafteten sie Phosphoritkonkretionen an. Die gefundenen Stücke sind meist große Formen, die bis zu 70 mm im Durchmesser halten. Durch den Druck der aufliegenden Schichten wurden sie zerbrochen, doch lagen die einzelnen Bruchstücke immer beisammen. Bemerkenswert ist, daß meistens nur die Wohnkammer oder der letzte Umgang aus schwarzen Phosphorit besteht, während die Luftkammern ursprünglich verkast waren und jetzt nur noch aus einer rostfarbigen Ockermasse bestehen, die beim Berühren zerfällt. Die erhaltene Ammonitenfauna ist ziemlich reichhaltig:

Cosmoceras ornatum SCHLTH.

" Duncani Sow.

Perisphinctes sulcifernes OPP.
" sp. cf. Ammonites convolutus parabolis QU.
(QUENSTEDT, Ammoniten, Taf. 81 Fig. 13.)

Hectioceras nodosulcatum LAH.
" pseudopunctatum LAH.
" krakoviense NEUM.
" rossiiense TEISS.
" cf. Brighti PRATT.
" cf. suevum BOX.

Die Phosphoritkonkretionen enthielten außerdem einige Kopfbruststücke von Krebsen (Glyphaea sp.)
Diese Fauna gehört ebenso wie diejenige der Geröll-Lagen der Zone des Cosmoceras ornatum an.1)

1) Wie weiter unten gezeigt werden soll, konnte ich im Frankenjura nur einige wenige Stellen auffinden, an denen die obere Ornatschichten (Zone des C. ornatum) noch in ihrer ursprünglichen Ablagerungsform erhalten sind. Hier auf der Steilseite wurden sie am schönsten erschlossen und erwiesen sich sehr fossilig. Durch den verschiedenen Erhaltungszustand der Fossilien der beiden Tonschichten 11 und 12 ist zunächst eine Trennung in normal gelagerte Tone und in eine darüber liegende Geröllschicht gegeben. Außerdem ist hier nachzuweisen, daß die Schichten des Cosmoceras ornatum bereits abgelagert und ihre Fossilien in phosphoritische Gesteine übergegangen waren, bevor die Abrasion der Ablagerungen am Grunde des Meeres vor sich ging. Der Umstand, daß aus der Zone des Peltoceras biarmatum im Frankenjura keine Fossilien gefunden werden — oder nur selten —, scheint darauf hinzuweisen, daß die Abrasion in die Zeit des Pelt. biar-
3) Zone des Cosmoceras Castor und C. Pollux. Die Schichten mit phosphoritischen Ammoniten gehen nach unten über in gelbliche Tone (10), die zunächst nur zersetzte (verrostete) und dadurch unkenntliche Ammonitenreste führen. Bald tritt jedoch eine reiche verkieste Fauna auf, die aus kleinen Ammonitenformen besteht:

Cosmoceras Castor REIN.
" Pollux REIN.
" Galealini SOW.
Reineckia anceps REIN.
" Fraasi OPP.
" Stübeli STEINM.
Stephanoceras coronatum BRUG.
Oceoptichius refractus REIN.
Strigoceras postulatum REIN.
Hecticoceras Brighti PRATT.
" krakoviense NÜM.
" rossienne TEISS.
" suevum BON.
Hecticoceras sp.

Unter den vielen glatten unbestimmbaren Formen sind mehrere Stücke, deren Durchmesser größer als 10 mm ist; diese gehören also Arten an, welche erst in verhältnismäßig spätem Alter eine charakteristische Berippung bekommen. Es sind des d in diesen Schichten des Frankenjura öfters vorkommenden Arten: H. pseudopunctatum LAM. und H. nodosulum LAM.

4) Zone des Cosmoceras Jason. Die Tonschichten (9) enthalten wiederum meist zersetzte Ammoniten; nur selten sind die verkiesten Stücke so erhalten, daß eine Bestimmung möglich ist, doch wurden neben der Reineckia anceps, die noch bis in die Castor-Pollux-Zone anhält, folgende für die Jason-Zone charakteristischen Arten gefunden:

Cosmoceras Jason REIN.
Hecticoceras lunula REIN.

Macroceplialites macrocephalus SCHLTH.
" tumidus REIN.
(Das weiter unten abgebildete phosphoritische Stück entstammt dieser Fundstelle.)

Perisphinctes funatus OPP.

natum fällt. Die Ammonitenschalen, die sich während dieser Zeit am Meeresgrund ansammelten, wurden durch die andauernden Abrasionsvorgänge zerbrochen und zerstört, bevor sie Zeit hatten, sich mit Schlamm zu füllen und in hartes, widerstandsfähiges Gestein überzugehen.

Von den vorhandenen Aufschlüssen sei nur noch der am Weg von Obernsees nach Wohnsdorf liegende besonders erwähnt. (Die Lokalität befindet sich ca. 400 m westlich von Wohnsdorf). Ich sammelte dort ein reiches Material verkiesster Ammoniten der C. ornatum-, der C. Castor-Pollux- und der C. Jason-Zone. Neben den Arten, die mit denjenigen der bereits gegebenen Fossilliste von der Steinleite über-einstimmen, sind noch folgende ebenfalls verkiesste Stücke zu erwähnen:

Cosmoceras ornatum SCHLTH.

Distichoceras sp. cf. Ammonites bipartitus QU.

(QUENSTEDT, Ammoniten, Taf. 85 Fig. 5.)

Phylloceras sp.

(Kleines, 7 mm im Durchmesser haltendes Stück. Die ganz feinen Rippen verlaufen vom Nabel an zunächst etwas nach vorne gerichtet, biegen sich aber auf der Mitte der Flanken schwach nach rückwärts und verlaufen nun radial. Externseite glatt; Einschnürungen nur angebaut. Höhe der letzten Windung 6 mm, Breite 5,5 mm. Das vorliegende Stück hat viele Ähnlichkeit mit Quenstedts Ammonites heterophyllus ornati = Phylloceras anterendens POM. (QUENSTEDT, Ammoniten, Taf. 86 Fig. 24.)

Cardioceras Lamberti SOW.

(NIKITIN, Jura-Ablagerungen zw. Ribinsk und Mologa, Taf. 1 Fig. 1.)

Nach diesen Funden zu urteilen, ist auch hier ein Teil der Zone des C. ornatum in ihrer ursprünglichen Ablagerungsform erhalten. Die Verkiesung reicht hier noch bis in den unteren Teil der Zone mit C. ornatum.

bank mit *Oppelia aspidoides* und dem Eisensandstein zutage treten.1) An dem Jurahang im Nordwesten der *Schweinsmühle* sind die Tone des Calloviens entblößt und man kann hier die kleinen verküisteten Ammoniten auflesen.

Erläuterungen zum Profil Bodendorf-Trockau.

Callovien. 1) Die Geröll-Lagen (14) ergaben an dieser Lokalität trotz ihrer Mächtigkeit (1.50 m) nur wenige Ammoniten:

Cosmoceras Duncanii SW.

Castor REIN.

Hecticoceras pseudopunctatum LAM.

Castor Duncanii ist im Frankenjura eine für die Zone des *C. ornatum* charakteristische Form. Da zugleich auch *C. Castor* unter den Geröllem auftritt, ergibt sich, daß hier die Donaudation bis in die *Castor-Pollux-Zone* hinaubreichte.

2) Die Zone des *Cosmoceras Castor* und *C. Pollux* läßt eine schöne Gliederung zu. Oben auf liegen die phosphoritischen Lagen (13) mit großen — allerdings meist zerdrückten — Ammoniten, deren innere Windungen häufig verküist waren, in der Folgezeit sich aber zersetzten haben. Ich fand in dieser Schicht als phosphoritische Steinkerne:

1) Von diesem Platz sagt SCHEFFER (Juriformation S. 59): „Die berühmteste Lokalität der Zone des *Bolusmites giganteus*, welche vorzüglich durch MÜSTER bekannt wurde, ist Rabenstein, wo die Schicht oberhalb der Schweinsmühle an mehreren Punkten aufgeschlossen ist und früher durch Nachgrabungen ausgebaut wurde.“
<table>
<thead>
<tr>
<th>Zonen</th>
<th>Nr.</th>
<th>Ausbildung der einzelnen Schichten</th>
<th>Mächtigkeit</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxford</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peltoceras transversarium</td>
<td>16</td>
<td>Gelbliche glaukonitische Kalko mit Perisphinctes plicatilis. Weißlicher toniger Kalkmergel.</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Glaubkonischer grünlich-grauer Ton.</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Graublauer Ton mit Phosphoritgerölle. Cosmoceras Duncani, C. Castor; Hectoceras pseudopunctatum.</td>
<td>1,50</td>
<td></td>
</tr>
<tr>
<td>Geröll-Lagen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cosmoceras Castor und C. Pollux</td>
<td>13</td>
<td>Gelb-grüner Ton mit rost-farbenen Abdrücken von Ammoniten und phosphoritischen zerdrückten Steinkernen von Ammoniten. Cosmoceras Castor; Reineckia anceps, R. Fraasi; Hectoceratites.</td>
<td>ca. 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Hellgrauer schiefgerader Ton mit rostfarbigen zersetzten Ammoniten. Mit Gipskeilschlüssen.</td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Grauer Ton mit vielen verkisten kleinen Ammoniten. Cosmoceras Castor, C. Pollux; Reineckia anceps; Oecotypus refractus u.s.w. (cf. Fossil-Liste).</td>
<td>0,70</td>
<td></td>
</tr>
<tr>
<td>Callovien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cosmoceras Jason</td>
<td>10</td>
<td>Hellgrauer schiefgerader Ton mit verkisten, aber meist zersetzten Ammoniten. Cosmoceras Jason; Reineckia anceps. Kleine hellbräunliche Phosphoritkonkretionen.</td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>Macrocephalites macrocephalus</td>
<td>9</td>
<td>Brauner oolithischer Ton mit vielen weißen phosphoritischen Steinkernen von Ammoniten, namentlich großen Perisphincten. Macrocephalites tumidus; Perisphinctes funatus.</td>
<td>0,30</td>
<td></td>
</tr>
<tr>
<td>Bathonien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oppelia aspidoides</td>
<td>8</td>
<td>Harte oolithische Kalkbank, außen gelbbraun, frische Bruchflächen blaugrau. Oppelia aspidoides, O. fusca; Rhynchonella varians.</td>
<td>0,20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Graue schiefgerade Tone.</td>
<td>0,60</td>
<td></td>
</tr>
<tr>
<td>Bajocien</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parkinsonia Parkinsoni</td>
<td>6</td>
<td>Oolithischer Tonmergel.</td>
<td>0,40</td>
<td></td>
</tr>
<tr>
<td>Stephanoceras Humphries</td>
<td>5</td>
<td>Gelbräune bis rostrote oolithische Kalkmergelagen. Parkinsonia Parkinsoni; Cosmoceras bifurcatum; Stephanoceras Humphriesianum. (Schräfers Gigantens-Oolith.)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sonninia Sowerbyi</td>
<td>4</td>
<td>Harte blaugrane Kalksandsteinbank mit Muschelträmmern und Serpula socialis.</td>
<td>0,10 bis</td>
<td>0,20</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Kalksandstein, stark ausgelangt, mit kleinen Toneisenstein-Gerölle.</td>
<td>0,20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Blaugrauer Ton.</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Eisensandstein im Liegendem.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cosmoceras Castor Rein.
Reineckia anceps Rein.
 † Fraasi Opp.
Stephanoceras coronatum Brug.
Hecticoceras Brighti Pratt.
 † krakoviense Neum.
 † pseudopunctatum Lahl.
 † rossienne Teiss.

Darunter folgt zunächst eine Lage (12) mit vollständig zersetzen — ursprünglich verkistet — Ammoniten. Auf den Schichtflächen liegen zahllose kleine sekundär gebildete Gipskriställchen. Erst dann (11) beginnt die reiche Fauna der kleinen verkisten Ammoniten. Es wurden hier folgende Arten gefunden:

Cosmoceras Castor Rein.
 † Pollux Rein.
 † Gulielmi Sow.
Hecticoceras Brighti Pratt.
 † krakoviense Neum.
 † cf. punctatum Stahl
 † pseudopunctatum Lahl.
 † rossienne Teiss.
 † suevum Box.
Reineckia anceps Rein.
 † Fraasi Opp.
 † Stübeli Steinm.
Oecoptychius refractus Rein.
Stephanoceras coronatum Brug.
Strigoceras postulatum Rein.

Oppelia sp. cf. Ammonites flexuosus canaliculatus Qu.
(Quenstedt, Ammoniten, Taf. 85 Fig. 43.)
Oppelia sp. cf. Am. flexuosus dentosus Qu.
(Quenstedt, Ammoniten, Taf. 85 Fig. 46.)
Distichoceras sp. cf. Am. bipartitus Qu.
(Quenstedt, Ammoniten, Taf. 85 Fig. 5.)
Phylloceras sp. cf. Ph. transiens Pom.
(Pompecki, Revision I, Taf. I, Fig. 6.)

Cosmoceras Jason Rein.
Reineckia anceps Rein.
Hecticoceras lunula Rein.

Was die Facies betrifft, so macht sich in der Jason-Zone der Übergang von den verkisten Stücken zu den tiefer liegenden Phosphoriten bemerkbar.
4) Die Zone mit *Macrocephalites macrocephalus* tritt hier als ein brauner oolithischer Tonmergel (9) auf, der reich an phosphoritischen Steinkernen von Ammoniten ist. Die Stücke haben eine glänzende weiße Oberfläche und geben die feinsten Details der Lobenzeichnung aufs schönste wieder. Diese Lage enthält:

Macrocephalites macrocephalus Schuch.

*" tumidus" Ren.

Perispinocites funatus Opp.

Die Macrocephalen-Zone behält diese Ausbildung bis gegen Pegnitz (im Südsüdosten) hin bei und selbst bei Troschenreuth sind noch unter der dort aufftretenden Kalkbank mit *M. macrocephalus* die schönen weißen Phosphorit-Ammoniten zu finden.

Die Kalkbank des Bathoniens hat an dieser Lokalität historisches Interesse, da hier Schröder zum erstenmal „in der obersten Lage der Eisenoolithe die echte *Rheynchonella varians* in vielen Exemplaren fand“1) und damit als erster Autor das Bathonien für den Frankenjura nachwies.

Auf die tieferen Zonen des Profils hier näher einzugehen ist nicht nötig.

Für die facielle Ausbildung des Callovien ergibt sich bei Bodendorf-Trockau folgendes Schema:

<table>
<thead>
<tr>
<th>Oxfordien</th>
<th>Zone des Peltoeceras transversarian</th>
<th>Kalk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cosmoceras ornatum</td>
<td>Phosphorit-Gerölle</td>
</tr>
<tr>
<td></td>
<td>Cosmoceras Castor und C. Pollux</td>
<td>Phosphorit</td>
</tr>
<tr>
<td></td>
<td>Cosmoceras Jason</td>
<td>Pyrit</td>
</tr>
<tr>
<td></td>
<td>Macrocephalites macrocephalus</td>
<td>Phosphorit</td>
</tr>
<tr>
<td>Callovien</td>
<td>Oppelia aspidoides</td>
<td>Kalk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathonien</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An dem von Trockau auf die „Bettelfrau“ führenden Weg — ca. 1 km von dem eben beschriebenen Profil entfernt — sind ebenfalls gute Aufschlüsse vorhanden; die dort zutage tretenden Zonen und Schichten stimmen mit denjenigen von Bodendorf überein, so daß ich diese Lokalität übergehen kann.

Im Süden und Südosten dieser Lokalität sind noch einige Plätze mit schönen Aufschläüssen zu erwähnen: Zunächst der Aufschluß an der Straße Trockau-Büchenbach, oberhalb des letztgenannten Dorfes, wo die Zone des Callovien mit den verkiisten Ammoniten der *Castor-Pollux- und Jason-Zone* frei zutage liegen und die harten Kalkbänke des Bathoniens und die oolithischen Mergelkalke des Bajociens an den Straßenböschungen ausstreichen. Dann folgt der schöne Aufschluß oberhalb des Dorfes Buchau am Buchauer Berg, dessen Profil sich bereits in Gumbels Frankenjura (S. 474) findet. Glaukonitschieht und Geröll-Lagen sind jetzt von Weißjura-Schutt bedeckt; Schürfungen, die ich in dem anstehenden Ton

vornehmen ließ, ergaben das bereits von Trockau-Bodendorf bekannte Bild: Die Castor-Pollux-Zone besitzt in ihrem oberen Teil phosphoritische Ammoniten, darunter kommen die kleinen verkiesten Stücke, die bis in die Jason-Zone hineinreichen. Das durch Schürfungen in den tieferen Schichten erhaltene Profil ist folgendes:

Profil am Buchauer Berg b. Pegnitz.

<table>
<thead>
<tr>
<th>Zonen</th>
<th>Nr.</th>
<th>Ausbildung der einzelnen Schichten</th>
<th>Mächtigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallovien</td>
<td>12</td>
<td>Ornamenton im Hangenden.</td>
<td>4–5</td>
</tr>
<tr>
<td>Macrocephalites</td>
<td>11</td>
<td>Grauer oolithischer Ton mit weißen phosphoritischen Steinkernen großer Ammoniten. Macrocephalites tumidus; Perisphinctes funatus.</td>
<td>0,30</td>
</tr>
<tr>
<td>Bathonien</td>
<td>10</td>
<td>Harte oolithische Kalkbank, beim Verwittern zu keilförmige Stücke zerfallend. Oppeliaspidoides.</td>
<td>0,15</td>
</tr>
<tr>
<td>Oppeliaspidoides</td>
<td>9</td>
<td>Blaugrauer Ton.</td>
<td>0,80</td>
</tr>
<tr>
<td>Parkinsoniinae</td>
<td>8</td>
<td>Harte, rotbraune oolithische Kalkmergelbank. Parkinsonia Parkinsoni.</td>
<td>0,15</td>
</tr>
<tr>
<td>Parkinsoniinae</td>
<td>7</td>
<td>Blaugrauer oolithischer Letten.</td>
<td>0,60</td>
</tr>
<tr>
<td>Parkinsoniinae</td>
<td>6</td>
<td>Gelbbrauner oolithischer erdiger Mergel.</td>
<td>0,40</td>
</tr>
<tr>
<td>Stephanoceras</td>
<td>5</td>
<td>Zähe oolithische Steinmergelbank von rotbrauner Farbe. Cosmomeras bifurcatum.</td>
<td>0,10</td>
</tr>
<tr>
<td>Humphriesianum</td>
<td>4</td>
<td>Tonig mergelige oolithische Lagen von rotbrauner Farbe mit unregelmäßigen Zwischenlagen härterer Gesteinsarten. Stephanoceras Humphriesianum.</td>
<td>3</td>
</tr>
<tr>
<td>Bajocien</td>
<td>3</td>
<td>Grauer Kalksandstein mit vielen kleinen Toneisensteinen. Pecten demissus.</td>
<td>0,20 bis 0,30</td>
</tr>
<tr>
<td>Soncinia</td>
<td>2</td>
<td>Gelblicher feiner Quarzsand.</td>
<td>0,05</td>
</tr>
<tr>
<td>Sowerbyi</td>
<td>1</td>
<td>Eisensandstein im Liegenden.</td>
<td></td>
</tr>
</tbody>
</table>

Das nun folgende Profil wurde teils durch Grabungen (Bathonien und Callovien), teils durch Beobachtung der anstehenden Schichten (Bajocien) gewonnen, und zwar an dem von Troschenreuth nach Südosten (nach der Waldabteilung „Dicke Eiche“) führenden Fahrweg, etwa 300 m von den letzten Häusern des Dorfes entfernt.
Profil Troschenreuth (bei Pegnitz)

<table>
<thead>
<tr>
<th>Zone</th>
<th>Zonen</th>
<th>Nr.</th>
<th>Ausbildung der einzelnen Schichten</th>
<th>Mächtigkeit m</th>
</tr>
</thead>
</table>
| Tortonien | Pellocerastra
tansversarium | 17 | Gelbliche glaukonitische Kalke. *Per. plicatilis.* | |
| | | 16 | Glaubonitischer grünlich-gelber Ton. | 0,10 |
| | | 15 | Blaugrauer Ton mit Phosphoritgerölten. | 0,50 |
| | | 12 | Harte, oolithische Kalkbank, hellbraun, frische Bruchflächen grün; mit vielen großen Ammoniten: *Macrocephalites macrocephalus, M. tumidus, Perisphinctes funatus, Kepplerites Gowerianus.* | 0,15 |
| | | 11 | Dunkelgrauer oolithischer Ton. | 0,50 |
| Bajocien | Oppelia aspidoides | 10 | Harte blaugraue oolithische Kalkbank. *Oppelia aspidoides.* | 0,15 |
| | Parkinsonsonia Parkinsoni | 9 | Oolithischer dunkelgrauer Ton mit großen phosphoritischen Konkretionen und Steinkernen von Ammoniten. *Parkinsonia ferruginea,* Kopfbüststücke von Krebsen. | 2 |
| | Stephanoceras humphriesianum | 8 | Gelbrannte Mergelkalke, stark oolithisch; *Parkinsonia Parkinsoni;* viele Bivalven (*Gresslya, Pholadomya*). | 0,50 |
| | | 7 | Braune, leicht verwitternde Mergelkalke, oolithisch. *Cosmoeceras bicuspidatum; Bellemnites gigontus.* | 0,20 |
| | | 6 | Oolithische Mergelkalke (wie 7); *Stephanoceras Humphriesianum.* | 0,25 |
| | Sominina Sowerbyi | 5 | Brauner Tonmergel. | 0,05 |
| | | 4 | Blaugraue sandige Kalkbank, besteht in verwittertem Zustand aus 3—4 Lagen. *Pecten demissus; Serpula socialis.* | 0,30 |
| | | 3 | Grauer Kalksandstein mit Kalkspat-Ausscheidungen. | 0,3—0,5 |
| | Harpoceras Murchisonae | 2 | Grauer schieferiger Ton. | 0,20 |
| | | 1 | Eisensandstein im Liegenden. | |
Erläuterungen.

Cosmoceras ornatum Schilth.

" distraetum Qu.

(Queystedt, Ammoniten, Taf. 84 Fig. 17.)

Cosmoceras Castor Rein.

" Jason Rein.

Reineckia Fraasi Opp.

Oppelaria suevica Opp.

(= Ammonites flexuosus inflatus Queystedt; Cephalopoden Taf. 9 Fig. 7.) Die vorliegenden Stücke sind etwas feinrippiger als die schwäbische Form.

III. Bajocien. Die tiefer liegenden Schichten entsprechen in ihrer Ausbildung und ihrem Fossilgehalt den bereits von den letzten Profilen (Buchau, Bodendorf, Rabenstein) her bekannten Verhältnissen. Erwähnenswert ist jedoch, daß das Toneisenstein-Konglomerat der Sowerbyi-Zone hier nicht mehr zu beobachten ist.

Die facielle Ausbildung der Braunjura-Schichten bei Troschenreuth läßt sich folgendermaßen darstellen:
<table>
<thead>
<tr>
<th>Oxford</th>
<th>Zone des Peltoceras transversarium</th>
<th>Kalk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zone des Cosmoeceras ornatum</td>
<td>Phosphorit-Gerölle</td>
</tr>
<tr>
<td></td>
<td>Zone des C. Castor und C. Pollux</td>
<td>Phosphorite</td>
</tr>
<tr>
<td></td>
<td>Zone des C. Jason</td>
<td>Phosphorite</td>
</tr>
<tr>
<td></td>
<td>Zone des Macrocephalites macrocephalus</td>
<td>Phosphorite</td>
</tr>
<tr>
<td>Callovien</td>
<td></td>
<td>Kalk</td>
</tr>
<tr>
<td>Bathonien</td>
<td>Zone der Oppelia aspidoide</td>
<td>Phosphorite</td>
</tr>
<tr>
<td></td>
<td>Zone der Parkinsonia ferruginea</td>
<td>Phosphorite</td>
</tr>
<tr>
<td>Bajocien</td>
<td>Zone der Parkinsonia Parkinsoni</td>
<td>Phosphorite</td>
</tr>
</tbody>
</table>

Südlich und östlich von Troschenreuth streichen die Doggerschichten an vielen Stellen des zerrissenen Jura-Terrains aus. Von den östlichen Punkten ist nur ein kleiner Aufschluß bei der Ortschaft Neuzirkendorf zu erwähnen, an dem die *Macrocephalene- und Aspidoide*-Kalkbank zutage tritt; im Süden waren einige Entblösungen im Ornamenton bei Gunzendorf und an der Pinzig-Kapelle zu beobachten. Der nächste schöne Aufschluß findet sich erst am Zogenreuther Berg bei Auerbach. Infolge einer tektonischen Störung sind hier die Schichten gebogen und zwar so, daß sie auf der Gugelplatte (Oberfläche des Zogenreuther Berges) noch nahezu horizontal liegen, während sie nach Südwesten hin derart einfallen, daß sie die Oberfläche des Berghanges bilden; einige Wasserläufe haben sich in den Schichtenkomplex eingefressen und entblößt namentlich die fossilreichen Oolithmergelschichten aufs schönste.

Für das folgende Profil wurde eine Grabung auf der Braunjura-Terrasse der Gugelplatte zwischen Auerbach und Zogenreuth vorgenommen und dadurch die Schichten des Callovians aufgeschlossen; das Bathonien und Bajocien ließ sich aus den natürlichen Aufschlüssen zusammenstellen; indessen mußte die von tonigem Material bedeckte und deshalb oberflächlich nicht zu beobachtende Bank mit *Parkinsonia Parkinsoni* erst durch eine Schürfung blossgelegt werden.

(Profil Auerbach siehe S. 51.)

Erläuterungen zu Profil Auerbach.

(Quenstedt, Ammoniten Taf. 89 Fig. 4.) Das vorliegende Bruchstück ist der halbe Umgang eines etwa 6 cm im Durchmesser haltenden Stückes. Während die eine Seite vollständig abgeschliffen ist, zeigt die andere die in zwei Reihen stehenden Knoten in guter Erhaltung. Zwischen beiden Knotenreihen geht der Hauptlateral-Lobus durch, wie das Quenstedt auch von seinem Exemplar erwähnt (S. 792). Die innere Knotenreihe sitzt bei Quenstedt’s Abbildung indessen näher am Umbonalrand als bei dem Auerbacher Stück.

<table>
<thead>
<tr>
<th>Zonen</th>
<th>Nr.</th>
<th>Anbildung der einzelnen Schichten</th>
<th>Mächtigkeit m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxford</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peltocerastransversarium</td>
<td>16</td>
<td>Gelbe glaukonitische Kalke, reich an Perispinchen aus der Gruppe des P. plicatilis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Grauer glaukonitischer Ton.</td>
<td>0.10</td>
</tr>
<tr>
<td>Crottovium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Bräunlicher oolithischer Ton mit oolithischen Phosphorit-Konkretionen.</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Oolithische Kalkbank. Macrocephalites tenuis.</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Oolithischer dunkler Ton.</td>
<td>ca. 1</td>
</tr>
<tr>
<td>Bathonien</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophelia aspidoides</td>
<td>9</td>
<td>Kalkbank mit kleinen Oolithkörnchen. Ophelia aspidoides.</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Grauer schiefriger Ton mit großen Phosphorit-Konkretionen und phosphoritischen Steinkernen von Ammoniten. Parkinsonia ferruginea; Triangula costata (Kalkschalen); * Glyphace sp.*</td>
<td>ca. 2</td>
</tr>
<tr>
<td>Bajocien</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parkinsonia Parkinsoni</td>
<td>7</td>
<td>Harte blaugraue oolithische Kalkbank; in zersetztm Zustand als rostrotter Kalkmergel vorhanden. Parkinsonia Parkinsoni.</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Grauer Ton.</td>
<td>0.5—1</td>
</tr>
<tr>
<td>Stephanoceras Humphriesianum</td>
<td>5</td>
<td>Gelbräune bis rostrote oolithische Mergelkalke mit einer reichen Fauna. Oben: Cosmorceras bifurcatum (sehr häufig); unten: Stephanoceras Humphriesianum.</td>
<td>2—3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Graue Tonbank.</td>
<td>0.30</td>
</tr>
<tr>
<td>Sonninia Sowerbyi</td>
<td>3</td>
<td>Braune schwach oolithische rauhe Kalkbank; Pecten dentissimus.</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Grauer Kalksandstein, beim Verwittern in mehrere 0.05 bis 0.15 m mächtige Bänkchen zерfallend mit Kalkpatascheisde; unten Toneisensteingerölle einschließend.</td>
<td>0.50</td>
</tr>
<tr>
<td>Harp. Murchis.</td>
<td>1</td>
<td>Eisensandstein im Liegenden.</td>
<td></td>
</tr>
</tbody>
</table>
Die Ausbildung des oberen Brunnens Jura im nördlichen Teile der fränkischen Alb.

Hecticoceras krakowiense Neum.

" sp. cf. *H. nodosum* Bonarelli.

(= *Am. hreutiens nodosum* Quenstedt, Ammoniten Taf. 82 Fig. 39.)

Perisphinctes sp.

Eine Anzahl unbestimmbarer Bruchstücke.

Glyphaea sp.

(Cephalothorax.)

2) Der eigentliche Ornatenton (13) erwies sich hier an Ammoniten, namentlich an charakteristischen Formen. Das einzige vorgefundene Stück eines *Cosmoceras* war nur teilweise als phosphoritischer Steinkern ausgebildet, die Luftkammern bestanden aus weicher Mergelmasse; zur Bestimmung war es unbrauchbar. Zu erwähnen sind:

Hecticoceras cf. *Brighti* Pratt.

" krakowiense Neum.

" *suecum* Bow.

" lunula Ziel.

Reineckiata anceps Rein.

" *Fraasi* Opf.

In den Aufschlüssen der nächsten Umgebung beobachtete ich hie und da Bruchstücke eines eigentümlichen harten feinkörnigen Tongesteines, das dem Ornatenton angehört. Es löst sich größtenteils in verdünnter Salzsäure auf; der Rückstand besteht aus dunkelgrünen Glaukonitkörnern, Quarzsplitterchen und Tonpartikelchen. Eine Platte dieses Gesteins, die ich in dem Wasserriss nordöstlich vom Schleichershof fand, enthielt:

Cosmoceras *Jason* Rein.

Reineckiata anceps Rein.

Hecticoceras sp.

Von zwei weiteren Stücken, die durch die Schachtanlage bei Welluck aus der Tiefe gefördert worden waren, enthielt das eine Abdrücke von zerbrochenen Schalen von:

Cardioceras sp.

Peltoceras sp.,

das andere: **Cosmoceras** sp. aff. *C. Pollux* Rein.

und einige schlecht erhaltene *Hecticoceraten*.

Es kommen also im Ornatenton bei Auerbach feste Gesteinsbänke vor, die schwärzliche Ammoniten-Abdrücke — keine Steinkerne — einschließen. Trotz mehrerer Schürfversuche gelang es mir nicht, dieses Gestein auszuhäufen zu finden. Die Grabung an der Gugelplatte, die das ganze Callovien in einem 3 m langen und 1 m breiten Graben erschloß, durchteufte nur fetten, teilweise schiefgerigen Ton mit Phosphoriten.

3) Die Macrocéphalen-Zone ist durch oolithische Tone vertreten, denen ähnlich wie bei Troschenreuth eine Kalkbank (11) eingelagert ist. Der obere Teil der Tonlagen (12) schließt hin und wieder oolithische phosphoritkonkretionen und phosphoritische Ammoniten ein.

II. Das Bathonien besteht auch hier aus einer oolithischen Kalkbank (9) und grauen Tonen (8) mit großen phosphoritkonkretionen. Zwischen letzteren liegen häufig phosphoritische Steinkerne von *Parkinsonia ferruginea*. Die Phosphorite treten hier im Bathonien in solcher Menge auf, daß bereits vor einigen Jahr-
Zogenreuthber Berg bei Auerbach.

Profil durch den Zogenreutber Berg bei Auerbach.

Figure 1.
Die Ausbildung des oberen Braunkohlen Jura im nördlichen Teile der Fränkischen Alb.

zehnten GÜMBEL die Möglichkeit einer Ausbeute erwog, schließlich aber wegen der geringen Mächtigkeit der Schicht davon abkam.

In der Sowerbyi-Zone treten hier wiederum Toneisenstein-Gerölle auf. Ihre Schichten sind besonders schön an dem von Auerbach nach Zogenreuth führenden Fußweg aufgeschlossen.

1) GÜMBEL, Weitere Mitteilungen über das Vorkommen von Phosphorsäure. 1867.
<table>
<thead>
<tr>
<th>Oxford</th>
<th>Gelbliche glaukonitische Kalkse mit Perisphinctes plicatilis im Hangenden.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Graue Tone mit Phosphoritgeröllen (Reineckia aniceps). 2 m</td>
</tr>
<tr>
<td></td>
<td>Oolithische Kalkbank. 0.2 m</td>
</tr>
<tr>
<td></td>
<td>Dunkle oolithische Tone mit oolithischen Phosphoritkonkretionen (Macrocephalites Herveyi). 0.5 m</td>
</tr>
<tr>
<td>Callovien</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oolithische Kalkbank (Rhynchonella varia). 0.2 m</td>
</tr>
<tr>
<td></td>
<td>Dunkelgrauer Ton. ca. 3 m</td>
</tr>
<tr>
<td>Bathonien</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rothbrannte oolithische Kalkmergel in unregelmäßig geschichtete Lagen verwitternd (Parkinsonia Parkinsoni, Cosmoroceras bifurcatum, Stephanoceras Humphriesianum, Belénites gigantes, viele Bivalven: Gresslya, Mudiola, Pholadomya, Lima, Ostrea); darunter die Kalksandsteinlagen mit Serpula socialis. zus. ca. 5 m</td>
</tr>
<tr>
<td>Bajocien</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eisensandsteinfelsen im Liegenden.</td>
</tr>
</tbody>
</table>

Erklärung zu Profil Bernricht.

Callovien. 1) **Geröll-Lagen.** Die unter der verhältnismäßig mächtigen Glaukonitschicht liegenden Tone erwiesen sich reich an abgerolltem phosphoritischem Material. Zunächst fielen die häufig vorkommenden — ebenfalls in Phosphorit übergegangenen — Stücke von Schwemmmholz auf, die namentlich im oberen Teil der Geröll-Lagen angetroffen wurden. Die Ammonitenfauna bestand aus:

Cosmoroceras sp. aus der Gruppe des *C. ornatum* Schlothe.

Ein 50 mm im Durchmesser haltendes Exemplar, von dem nur der letzte Umfang durch Abrüllung zerstört ist. Von der Wohnkammer ist ein kleiner Teil erhalten. Während bei *C. ornatum* Schlothe. die Knoten gegen die Wohnkammer hin verschwinden, sind am vorliegenden Stück die drei Knotenreihen auf beiden Seiten noch kräftig entwickelt. Hinsichtlich Berüting und Stellung der Knoten entspricht es dem von TEISEYRE, Rjasan Taf. IV, Fig. 21 abgebildeten *C. aff. transitionis* Nuk.; der Querschnitt des vorliegenden Stückes ist jedoch ebenso breit als hoch.

Stephanoceras coronatum Brugh.

Reineckia aniceps Rein.

„ Fraasi Opp.

Hecticoceras Brightli Pratt.
Hectoceras cf. lamula ZIET.
(ZIETEN, Verst. Württ. Taf. X Fig. 4.)

Hectoceras krakoviense NEUM.
" nodosulcatum LAH.
" pseudopunctatum LAH.
(Sehr häufig.)

Hectoceras rossiiense TEISS.
(Häufig.)

Strigoceras punctatum REIN.

Profil Bernricht (bei Sulzbach).

<table>
<thead>
<tr>
<th>Zone</th>
<th>Nr.</th>
<th>Ausbildung der einzelnen Schichten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelt, transvers.</td>
<td>8</td>
<td>Gelbliche glaukonitische Mergelkalke im Hangenden.</td>
</tr>
<tr>
<td>Geröll-Lagen</td>
<td>7</td>
<td>Glaubonitischer grauer Ton.</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Holzgrauer Ton mit vielen Phosphoritgeröllem und phosphoritischen Steinern von Ammoniten. Cymnoceras cf. C. ornatum; Stephanoceras coronatum; Reineckia anceps, R. Fraasi; Strigoceras punctatum; viele Hectococeraten; Schwammholzstücke.</td>
</tr>
<tr>
<td>Callovien</td>
<td>5</td>
<td>Gelblicher oolithischer Ton mit einzelnen Phosphorit-Konkretionen.</td>
</tr>
<tr>
<td>Macrocephalites macrocephalus</td>
<td>4</td>
<td>Oolithische Kalke, bestehend aus großen gerundeten, brotballförmigen Knollen.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Gelblicher oolithischer Ton mit oolithischen Phosphorit-Konkretionen.</td>
</tr>
<tr>
<td>Bathonien</td>
<td>2</td>
<td>Harte blaugraue oolithische Kalkbank mit Oppelia aspidoides.</td>
</tr>
<tr>
<td>Oppelia aspidoides</td>
<td>1</td>
<td>Dunkelgrauer Tone im Liegenden.</td>
</tr>
</tbody>
</table>

Zones des M. macrocephalus. Sofort unter den Geröll-Lagen stellte sich gelber oolithischer Ton ein, dem einige oolithische Phosphorit-Konkretionen eingelagert waren. Fossilien wurden nicht darin vorgefunden, da jedoch der Oolith in der Macrocephalites-Zone seine obere Grenze erreicht, muß die Lage 5 dieser Zone angehören. Bei Bernricht reicht also die durch Denudation erfolgte Zerstörung des Calloviens bis auf die Macrocephalites-Zone hinab.

Unter der oolithischen Tonschicht folgt zunächst die hier nicht als geschlossene Bank vorhandene Kalksteinlage (4), und dann wiederum oolithischer Ton. Derselbe enthieilt viele Phosphorit-Konkretionen und Belemnitites calloviensis in färberischen Lagern. In dieser Schicht stellte sich ganz unerwartet Wasserandrang ein, wo durch sich die Grube derart mit Wasser füllte, daß ein Tiefergraben zunächst schwierig und dann unmöglich wurde. In den ausgehobenen Phosphorit-Konkre-
tionen waren Macrocephalen und Perisphincten zu erkennen; ihre Steinkerne sind jedoch so fest mit dem Phosphorit verwachsen, daß ein Entfernen desselben und eine Artentwicklung unmöglich ist. Darunter kam dann eine Kalkbank, die nicht weit von der Aufschlußstelle ausstreicht und hier *Oppelia aspidoides* enthält, also bereits dem Bathonien angehört.

Die Braunjura-Schichten im südlichen Teile der Oberpfalz.

Konnte man in den bisher untersuchten Jura-Gegenden eine Ausbildung der Braunjura-Schichten verfolgen, die zwar abwechslungsreich war, aber sich durch vermittelnde Übergänge zu einem großen einheitlichen Bild gestaltete, so treten uns hier im südlichen Teil der Oberpfalz plötzlich die analogen Schichten in einer völlig verschiedenen Ausbildung entgegen.

steine ausstreichen. Es fällt bereits hier die geringe Gesamtäquidität des Profils auf, doch sind die oolithischen Kalkmergel der *Humphriesianum-Zone* noch vorhanden, ebenso an dem noch weiter östlich liegenden Kapellenberg bei *Paulsdorf*.

Erst 8 km südöstlich von Amberg, bei *Ebermannsdorf*, ist an dem nach Lengefeld führenden Weg ein nennenswertes Profil aufgeschlossen. Hier liegen die harten Kalkbänke mit *Parkinsonia Parkinsoni*, *P. ferruginea* und *Oipplea aspidoides* so dicht unter den glaukonitischen Kalken mit *Perisphinctes plecatilis*, daß man sie leicht verkennen kann. Darunter sind noch folgende Schichten zu beobachten:

<table>
<thead>
<tr>
<th>Schichten Description</th>
<th>Mächtigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gelbbräuner oolithischer Ton</td>
<td>0,30 m</td>
</tr>
<tr>
<td>Bräunliche Kalkmergel mit wenig Oolith; Stephanoceras Humphriesianum, Parkinsonia Parkinsoni</td>
<td>0,15 bis 0,20 m</td>
</tr>
<tr>
<td>Bräunlicher Kalksandstein mit spätigen braunen Kalkausschei-</td>
<td></td>
</tr>
<tr>
<td>dungen</td>
<td>ca. 0,30 m</td>
</tr>
<tr>
<td>Eisensandstein im Liegenden</td>
<td></td>
</tr>
</tbody>
</table>

Das Bathonien besteht hier aus zwei petrographisch verschiedenen Gesteinen: das tiefer liegende ist ein dichter feinkörniger bräunlicher Kalk mit zahlreichen Einschlüssen von Parkinsonien, die oft beträchtliche Größe erreichen. Ihre Luftkammern sind mit hellem, nahezu durchsichtigem Kalkspat erfüllt, den die dunkelbräunen Kammerwände durchziehen. Oft besteht auch der ganze Stein kern des Ammonitengehäuses aus glänzend-weißem Kalk und läßt dann die feinsten Details der Lohenzzeichnung erkennen.

Von den dort lose gesammelten Ammoniten, die hinsichtlich ihrer petrographischen Beschaffenheit dieser Bank angehören, sind zu nennen: *Parkinsonia ferruginea*, *P. Würtembergica*, *P. Neujiensis*, *P. Parkinsoni*.

Es ist zunächst auffallend, daß sich hier nochmals *P. Parkinsoni* vorfindet, obgleich dieselbe bereits in der tieferliegenden Bank des oberen Bajociens gefunden wurde. Nach den von SCHLITTE (Das Bathonien u. s. w. 1888) im oberrheinischen Tiefland gemachten Beobachtungen ist indessen *P. Parkinsoni* nicht auf den Hauptrogenstein (= *Parkinsoni*-Schichten in Franken) beschränkt, sondern findet sich in Baden noch in den *Ferrugineus*-Schichten zusammen mit *P. ferruginea, P. Schloenbachii* und *P. compressa*; im Elsaß geht sie sogar „durch das ganze Bathonien, von den Schichten des *Cosmoceras subfarcatum* bis zu den Schichten des *Stephanoceras subcontratum*“ (l. c. S. 208). Ob daher das vorliegende Gestein ganz als untere Abteilung des Bathoniens (= Schichten mit *P. ferruginea* nach SCHLITTE) zu gelten hat, oder ob in demselben ein Übergang der *Parkinsoni-Zone* zum Bathonien stattfindet, werden spätere Untersuchungen zeigen.

Die oberen Lagen bestehen aus einem heller dichten Kalk, der stellenweise oolithisch ist und häufig eine reiche Fauna, darunter *Oppelia aspidoides* und *O. fusca* in Mengen, einschließt. Es ist das diejenige Lage, welche WANDERER bei Münchshofen ausbeutete und die ihm das Material zu der Fossilliste (W. Juraablagerungen, S. 522 ff.; Schicht 10) lieferte.

Weiter im Süden sind einige Aufschlüsse an den das Haselbachtal einschließenden Höhen z. B. bei Au: überall machen sich an denselben die beiden genannten Gesteine des Bathoniens bemerkbar.

Erst weiter im Osten, jenseits des Naabtales sind wiederum schöne Aufschlüsse an dem im Osten der Stadt *Schwandorf* liegenden Berg (Holzberg, Weinberg) zu erwähnen. Dieser erhebt sich etwa 70 m über die Talsohle; er besteht aus Eisen-
sandstein, seine Oberfläche ist von cretacischen Ablagerungen bedeckt. Die Eisen-
sandsteinquadern wurden früher in großen Steinbrüchen gebrochen, jetzt sind
 diese verlassen. Im Herbst 1905 untersuchte ich die dortige Gegend und fand
 in dem nördlichsten und östlichsten der Steinbrüche die Kalk-Mergelbänke des
 Bajociens und Bathoniens noch teilweise unter der cretacischen Decke erhalten;
 Fossilien der Macrocephalen-Zone und Stücke von Perisphinctes plicatilis las ich
 auf den Äckern der südwestlichen Bergzunge auf.

Vor Ablagerung der cretacischen Schichten hatte also in der Gegend von
 Schwandorf eine starke Abtragung stattgefunden, durch welche nicht nur die Weih-
 jura-Schichten bis auf geringe Spuren, sondern auch die oberen Braunjura-Gesteine
 bis auf einzelne Schollen zerstört worden waren.

Da sich die beiden genannten Aufschlüsse an den steilen Wänden tief aus-
 gebrochener Steinbrüche befinden, war es nicht möglich das ganze Profil der
 Schichtenreihe genau zu untersuchen; aus der Beobachtung des nördlichen Auf-
schlusses ergab sich:

Zunächst über den mächtigen Quadern des Eisensandsteins liegen schieferige
 Lagen von Kalksandsteinen, darüber oolithische Kalkmergel von geringer Mächtig-
 keit mit Parkinsonia Parkinsoni. Dann folgen die gelben massigen Kalke (1—2 m)
 mit großen Exemplaren von Parkinsonien; darüber rostrote oolithische Kalkmergel-
 Lagen (ca. 0.5 m) mit einer reichen Fauna (Oppelia aspidoides, O. fusca, Pholadomya,
 Gresslya, viele Brachiopoden). Letzteres Gestein gleicht in seiner Ausbildung den
 Schichten des oberen Bajociens der Gegend von Neumarkt (Obpf.) oder von Raben-
 stein. Als höchstes Glied des Braunen Jura wurde ein kalkig-mergeliges Bänkchen
 (ca. 0.05 m) mit großen Oolithkörnern, das der Macrocephalen-Zone entsprechen
 dürfte, angetroffen. Über ihm liegt stellenweise eine grünliche Tonschicht von
 geringer Mächtigkeit, die bereits zu den cretacischen Ablagerungen zu zählen ist;
 Ornamenten ist es nicht, auch wohl kein Umlagerungsprodukt desselben, da es sich
 frei von Glaukonit erwies.

Erwähnung mögen hier noch die aus alter Zeit stammenden Bergwerkshalden
 finden, die auf der über den Aufschlüssen liegenden Hochfläche zu sehen sind.
 Sie bestehen aus Oolithkörnchen und sind jedenfalls das Aufbereitungs-Produkt der
 Schichten mit Oppelia aspidoides und Parkinsonia Parkinsoni, da man hin und
 wieder Fossilien dieser Zonen in den Erzaufhänften vorfindet. Es ist dies der einzige
 mir bekannte Fall, daß man versuchte, die Oolithschichten des Bajociens und
 Bathoniens im Frankenjura bergmännisch abzubauen und auf Eisen zu verhüten.

Als nächstes zur Untersuchung geeignetes Gebiet ist die Gegend östlich von
 Burglengenfeld zu erwähnen. Hier erhebt sich der weithin sichtbare Münchberg,
 in halber Höhe umgrenzt von der Braunjura-Terrasse. Ein von Münchshofen
 nach Stocka führender Weg durchschneidet dieselbe in einem Hohlweg und liefert
 das schöne von Wanderer aufgefunden und beschriebene Profil (Jura-Ablage-
 rungen S. 521 ff.), das durch das Vorhandensein der Biarmaten-Zone von außer-
döntlichem Wert ist.

Bemerkenswert ist, daß es nur ein kleines, kaum 0.05 m mächtiges, durch
 Eisenoxyd-Ausscheidungen braun gefärbtes Mergelbänkchen ist, das diese Zone
 repräsentiert. Es scheint nur eine geringe horizontale Erstreckung zu besitzen,
 denn im Aufschluß bereits geht es in knollige Absonderungen über und keilt nach
Süden hin aus. Der darunter liegende Ton enthält Phosphorit-Gerölle, darüber ist eine glaukonitische Tonlage: die Biarmaten-Schicht liegt also mitten in den Geröll-Lagen. Ihre Entstehung ist etwa folgendermaßen zu erklären: Die Denu-
dation, durch welche die Ornamentone im Frankenjura teilweise zerstört wurden, fand während der Biarmaten-Zeit durch tiefgehende Wellenbewegung oder durch Meereströmungen statt. Dadurch wurden die auf dem Meeresboden fallenden Ammonitenschalen bald zerstört. Hier dagegen scheint eine Zeitlang das Meer ruhiger gewesen zu sein, daß sich Sedimente bilden und erhärten konnten. Später, als sich wiederum tiefgehende Wasserbewegung geltend machte, wurde die Biarmaten-
Bank durch den von anderwärts angeworfenen glaukonitischen Schlamm bedeckt.

Außerdem mag noch erwähnt sein, daß ich in den darunterliegenden Mergel-
kalken (WANDERER l. c. S. 526 Schicht 11) ein Exemplar von Macrocephalites tambidus fand, wodurch das Vorhandensein der Macrocephalen-Zone erwiesen ist.

Die nächsten Aufschlüssle sind 1,5 km weiter im Westen beziehungsweise Südwesten und zwar bei Premberg. Der von hier auf die westlich gelegene Höhe führende Fahrweg lieferte folgendes Profil:

Profil Premberg (bei Burglengenfeld).

<table>
<thead>
<tr>
<th></th>
<th>Zonen</th>
<th>Nr.</th>
<th>Ausbildung der einzelnen Schichten</th>
<th>Mächtigkeit m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxford</td>
<td>Peltocerastransversarium</td>
<td>6</td>
<td>Heilgraue kalkige Mergelschiefer mit vielen Ammoniten aus der Gruppe des Perisphinctes plicatilis.</td>
<td></td>
</tr>
</tbody>
</table>
| | | 5 | Glaunokitische gelbliche Kalkbank, vom Wasser stark aus-
gefressen. | 0,30 |
| | P. biarmatum? | 4 | Braunr zäher Kalkstein, ebenfalls stark ausgelangt. | 0,30 |
| Callovien | Geröll-Lagen | 3 | Stark glaukonitischer grauer Ton, in der unteren Partie mit vielen Phosphoritgerölle und phosphoritischen Steinern von: *Stephanoceras coronatum; Reineckia ancesp; R. Fraasi; Hecticocerat.* | 0,10 bis 0,30 |
| | | 2 | Gelbe bis braune oolithische Tone mit Kalk- und Braun-
eisen-Koakcretionen. | 0,50 |
| Bath. | Oppelia aspidoides | 1 | Braune Kalksandsteine mit spätigen Kalk-Einsprenglingen im Liegenden. | |

In diesem Profil fällt zunächst die unter den glaukonitischen Weißenjura-
Schichten befindliche braune, sehr dichte und zähe Kalksteinbank auf. Diese ist eine ganz fremdartige Erscheinung und kann deshalb möglicherweise der Biarmaten-Zone angehören. Das Gestein erwies sich an den beobachteten Aufschlüssen leider fossilleer.

Darunter folgt die stellenweise bis auf ein Minimum von 10 cm reduzierte Geröll-Lage, die aber trotz der geringen Mächtigkeit reich an Geröllen und Ammon-
itenresten ist. Es wurde hier gefunden:

Stephanoceras coronatum Brug.
Reineckia ancesp REX.
Galgenberg bei Regenstauf.

Reineckia Fraasi Opp.
Hecticoeras sp. cf. H. Brighti Pratt.
" rossienne Teiss.
" punctatum Stahl.
" cf. pseudopunctatum Lahl.

Während von diesen Arten St. coronatum, R. Fraasi und H. Brighti auf die Castor-Pollux-Zone beschränkt sind, gehören die anderen Arten sowohl dieser wie der Jason-Zone (R. anceps) beziehungsweise der Ornatum-Zone an. Sicher erwiesen ist also hier nur das Vorhandensein sekundär abgelagerten Materials aus dem mittleren Ornatumton, doch dürften wohl bei weiterer Ausbeutung des Fundplatzes auch Stücke gefunden werden, die für die beiden anderen Zonen charakteristisch sind.

Die Geröll-Lage liegt hier direkt auf den wahrscheinlich der Macrocephalen-Zone angehörenden oolithischen Tonschichten. Unter diesen folgen dickbankige braune schwach-oolithische Kalksteine, die dem Gestein des Bathoniens bei Münchshofen gleichen.

Die südöstlichsten Aufschlüsse im bräunen Jura sind — abgesehen von denjenigen in Niederbayern — am Galgenberg bei Regenstauf und am Keilberg bei Regensburg. Über diese liegen bereits eingehende Untersuchungen in folgenden Abhandlungen vor:

2) Pompeckj, Die Jura-Ablagerungen zwischen Regensburg und Regenstauf 1901, S. 158 ff. beziehungsweise 149 ff.

Am Galgenberg, wo die Schichten überstürzt sind, folgen über den glaukonitischen Weißjurakalken die Geröll-Lagen des Callovien mit folgenden hier interessierenden Arten, die der von Pompeckj gegebenen Fossilliste (l. c. S. 162, 163) entnommen sind:

Cosmoceras sp. cf. Amm. ornatus rotndulus Qu.
" Castor Rein. sp.
" Jason Rein. sp.
Reineckia anceps Rein. sp.
" Fraasi Opp. sp.
Hecticoeras cf. krakowienne Neum.
" cf. pseudopunctatum Lahl.
" rossienne Teiss. sp.

Es kommen also hier typische Formen der drei Zonen des Ornatumtons vermengt in der Geröllschicht vor; letztere liegt unter den oolithischen Macrocephalen-Tonen. Es ist dies ein ähnliches Bild wie es bei Premberg — dort allerdings in etwas geringerer Mächtigkeit — vorliegt: Die Denudation zerstörte an beiden Lokalitäten die Sedimente der Ornatum-, Castor-Pollux- und Jason-Zone, wodurch die
phosphoritischen Steinkerne der Ammoniten aus den sie umschließenden Ton-
schichten ausgewaschen, abgerollt und vermengt wurden.

Der Aufschluß in der Tegernheimer Schlucht am Keilberg bietet ein
etwas anderes Bild. Hier ist von Callovien nur die unterste Zone vertreten und
zwar durch eine gelbräumliche oolithische Kalkbank, erfüllt von Ammoniten der
Macrocephaliden-Zone. Darüber folgt sofort glaukonitischer Kalk, in dem Pommel
Cardioceras cordatum und Perispinites plicatilis fand (l. e. S. 153), dann grau-
bräunener Kalk (3) durchsetzt mit Bändern, Flasern und Konkretionen von Braun-
eisenerz. Erst darüber liegen die grünlich- bis gelbräunenen Mergel und Kalke der
Transversarium-Zone mit Perispinites chlorooolithicus, P. Martellii, P. plicatilis.

Ähnlich wie in der Burglengenfelder Gegend ist also hier die Biarmaten-
Zone durch eisenschüssige Kalk- und Mergellagen vertreten. Dagegen fehlt der
Ornatenton und selbst die ihn sonst vertretende Geröll-Lage vollständig. Es kann
dies nur damit erklärt werden, daß auch hier die Denudation die Schichten des
Ornatontons zerstörte: die tonigen Bestandteile wurden fortgeführt und die Phos-
phorite, die bereits am Regenstaufer Galgenberg viel mergeliger und weicher als
weiter im Norden sind, wurden durch das Umherrollen auf der harten Macro-
cephalen-Bank vollständig zerkleinert und ihr Rückstand ebenfalls weggeschwemmt.

II. Die Facies-Arten des Braunen Jura
in der Fränkischen Alb.

Nachdem im ersten Teil die Braunjura-Schichten eine systematische Unter-
suchung im nördlichen Teil der Fränkischen Alb erfahren haben und für dieselben
eine ins Detail gehende Gliederung an der Hand einer Reihe von Profilen durch-
geführt wurde, sollen nun im zweiten Teil die sich daraus für die einzelnen Zonen
ergebenden faciellen Verhältnisse besprochen werden. Dabei wird auch der süd-
liche Teil der Fränkischen Alb Berücksichtigung finden. Das unterste Glied des
Braunen Jura, der Opalinus-Ton, bleibt hier ebenso wie im ersten Teil unberück-
sichtigt. Dagegen wird auf Beschreibung des Callovien besonderses Gewicht gelegt.
Zunächst wird eine auf paläontologischer Basis beruhende Einteilung dieselben in
mehrere Zonen gegeben, dann werden die Facies-Arten untersucht und schließlich werden
die im fränkischen Callovien allenthalben beobachteten Denudations-Erscheinungs-
ungen besprochen. Die Einteilung des Calloviens in einzelne Zonen beansprucht
paläontologische Details. Diesem Zweck dient der dritte Teil, der eine kurze Bes-
chreibung der für das fränkische Callovien wichtigen Ammoniten-Arten bringt.

Bajocien.

Für die Gliederung des fränkischen Bajociens erweist sich folgende Zonen-
einteilung als die am besten durchführbare:

(1) Dieser Kalk, der an und für sich frei von Oolith ist, schließt häufig Gerölle oolithischen
gelben Kalkes ein: er zeigt also, daß durch die Denudation nicht nur der Ornatenton, sondern
stellenweise auch die harte Macrocephalenbank zerstört wurde.
Zone der Parkinsonia Parkinsoni . . . (unteres) 2
 Subzone des Cosmóceras bifurcatum . . . 2
Zone des Stephanoceras Humphriesianum . . .
 der Soninia Sowerbyi 2
 des Harpoceras Murchisonae 2

Die Zone der Harpoceras Murchisonae umfaßt in Franken die mächtig ent- wickelte Schichtenreihe des Eisensandsteins und nimmt den größten Raum im ganzen Braunjura-Profil ein. Die Sowerbyi-Zone ist auf eine oder einige durch schieferige Tonlagen getrennte Kalksandstein-Bänke beschränkt, die gewöhnlich sehr arm an Ammoniten sind. Darüber folgt ebenfalls — durch schieferige Tone von geringer Mächtigkeit geschieden — sofort die Humphriesianum-Zone. Wegen

stellt zwar für Franken eine Sauzei-Zone auf, indem er sich auf einen Ammonites polyschides (= A. Brocchi Opp.) bezieht, den er als Fossil einer oolithischen Kalkbank des Hetzlas-Sattels (Leyerberg bei Erlangen) angibt.1) Mir gelang es weder an dieser Stelle noch an den übrigen Aufschlüssen im Frankenjura zwischen Sowerbyi- und Humphriesianum-Zone eine Sauzei-Zone festzustellen. Der Grund

Zone des Harpoceras Murchisonae.

Das Liegende des untersuchten Schichtenkomplexes bildet der Eisensandstein. Er ist in Franken außerordentlich mächtig entwickelt — zwischen 50 und 100 m — und besteht aus eisenschüssigen Sandsteinschichten und -Bänken. Zwischen diesen kommen einige Lagen vor, die infolge ihres Fossilinhaltes hier interessieren:

1) Über die Zone des Ammonites Sowerbyi, S. 527.
2) Steuer, Doggerstudien. Ein Beitrag zur Gliederung des Doggers im nordwestlichen Deutschland, Jena 1897.

Am Leyerberg bei Erlangen liegt sie etwa in halber Höhe des Eisensandsteins; an der Ehrenbürg bei Forchheim tritt sie dagegen erst in dessen oberster Partie auf; diese Lage behält sie weiter nach Norden zu. Da sie infolge ihrer festen kompakten Beschaffenheit schwerer verwirrte, als die eigentlichen Eisensandsteine, bildet sie stellenweise eine kleine Terrasse, die zwischen Ebermannstadt und der Staffelsteiner Gegend hin und wieder zu beobachten ist. Am Cordigast und bei Kircheleus-Weißenbrunn sind die kalkigen Bestandteile, also die Muschel- und Schneckenschalen ausgelagert, so daß hier ein poröses Gestein mit Abdrücken, die die feinsten Details der Schalenverzierungen wiedergeben, vorliegt.

Diese Bank dürfte identisch sein mit der Muschelbank, die im Hangenden des Wasseraffinger Eisenerzes auftritt und von *Fraas* als „Dachgestein des oberen Flötzes“ beschrieben wird.1)

Zone der Sonninia Sowerbyi.

Über dem Eisensandstein stellen sich glimmerige Tone und Kalksandsteine ein. Es deuten diese Absätze auf ein Zurückkehren der Flachsee. Die unterste Lage der Kalksandsteine enthält außerdem häufig abgerollte Stücke von Eisensandstein und runde, aus den tiefer liegenden Schichten ausgewaschene Toneisenstein- knollen, also Bestandteile, welche auf eine starke Wasserbewegung schließen lassen. (Grundkonglomerat.) Fluviatile Bildungen wurden bisher nirgends beobachtet.

Die Quarzsand-haltige Kalkbank mit *Sonninia Sowerbyi* ist über den größten Teil des Frankenjuras verbreitet; nur im Südosten — zwischen Amberg und Regensburg — fehlt sie nach den bisherigen Untersuchungen. Charakteristisch ist für sie das eigentümliche Gemenge von Muscheltrümmern, aus dem s.e. teilweise besteht. Dieses Haufenwerk von zerbrochenen Muschelschalen weist jedoch noch keines-

wegs, daß diese Ablagerungen sich in der Brandungs-zone in nächster Nähe des Strandes bildeten. Es kann ebenso eine Flachsee mit reicher Fauna gewesen sein. Raubfische und Krebse zerbissen die Kalkschalen der Mollusken und nährten sich von deren Inhalt. 1) Durch die bis auf den Meeresboden sich erstreckende Wirkung der Wellen wurden dann die Muschelreste gleichmäßig über weite Flächen verbreitet. Bei Friesen erlangt diese Zone ihre größte Mächtigkeit (0,7 m Kalkbänke und 3,40 m Lettenlagen) und auch ihren größten Ammonitenreichum. So kommt es, daß diese Zone zuerst hier durch Ammoniten-Funde von Schüefer (im Jahre 1861) für den Frankenjura nachgewiesen wurde. 2)

An den übrigen Lokalitäten ist es meist eine ca. 20 cm mächtige Bank. Sie besteht aus einigen petrographisch verschieden zusammengesetzten Lagen, die sich beim Verwittern voneinander lösen. Die untere Partie ist meist fossileer. Sie enthält dagegen die bereits erwähnten abgerollten kugeligen Stücke von Eisensandstein. Daraus folgt, daß der Eisensandstein bereits verfertigt war, als die Transgression des Meeres stattfand, wobei der Boden durch die Wogen stellenweise aufgerissen wurde.

Über diesem Grundkonglomerat folgt eine Kalksteinlage, etwa 4–5 cm mächtig, vermengt mit feinem Quarzsand und durchzogen von unzähligen Faden büschen der Serpula socialis. Diese treten nahezu überall in solcher Gleichmäßigkeit auf, daß sie zu einem charakteristischen Leitfossil werden.

und ein nicht näher bestimmmbares Belemniten-Rostrum. Diese Konkretionen sind zwar gerundet, zeigen aber nicht so deutliche und auffallende Merkmale von Abrollung, wie sie teilweise den Phosphoriten des Ornamentons eigen sind.

1) Walther, Einleitung in die Geologie als historische Wissenschaft, 1893, S. 669.
2) Schüefer, Juraformation. S. 55.
3) Waagen, Über die Zone der Soninia Sowerbyi S. 528, 529.
Die Zonen des Stephanoceras Humphriesianum, des Cosmoceras bifurcatum und der Parkinsonia Parkinsoni.

"Der mittlere Braune Jura teilt sich in Schwaben in zwei Facies: in eine eisenoolithische mit feinen Brauneisenkörnern, die sich besonders an beiden Enden der Schwäbischen Alb, um Spaichingen und Bopfingen entwickelt, und eine tonig-mergelige, welche sich südlich von Tübingen dazwischen schiebt (l. c. S. 523). Wo die Eisenoolith herrsche, wie am Nipf bei Bopfingen, schließen sich die Parkinsoni-Bänke noch eng an die Bifurcaten-Oolithe an und sind davon um so schwerer zu unterscheiden, als auch der riesige Belemnites giganteus bis hier heraufgeht und dann ausstirbt" (l. c. S. 595).

Wie die Fossilfunde ergeben haben, ist Stephanoceras Humphriesianum in den Ablagerungen der beiden Faciesarten vertreten, also sowohl in den oolithischen Kalkmergeln, wie in dem harten dichten Kalkgestein.

Die Bifurcaten, welche der oberen Region der Humphriesianum-Zone angehören und die darüber folgende Parkinsonia Parkinsoni treten jedoch nur dort auf, wo die oolithische Kalkmergel-Facies herrscht.

Ihre mächtigste Entwicklung erlangt die Oolith-Facies am Zogenreuther Berg bei Auerbach. Zwar kann man sich hier leicht über deren Mächtigkeit täuschen, da die Schichten an dieser Lokalität nicht horizontal liegen, sondern schwach gewölbt sind, so daß an dem westlichen Abhang des Hügels die Schichtenreihe der Humphriesianum-Zone auf eine größere Strecke hin an der Oberfläche bleibt. Mehrere metertiefe Wasserrisse haben sie herrlich aufgeschlossen. Hier werden neben den Humphriesiern die bifurcaten Ammoniten, ferner eine Menge von Bivalven, Gasteropoden u. s. w. gefunden. Ein Verzeichnis der von diesem Fund-

In den Kalkmergelbänken der *Humphriesianum*-Zone stellen sich zum erstenmal 2) die Brauneisen-Oolithe in größerer Menge ein. Stellenweise, z. B. bei Friesen enthalten zwar bereits die der *Sowerbyi*-Zone angehörenden Kalkbänke kleine Oolith-Körnchen, doch niemals in der Menge, daß die Gesteine beider Zonen verwechselt werden könnten. Den verwitternden Kalkmergelbänken verleiht die in Zersetzung befindlichen Eisenoolith-Körner ein ganz charakteristisches rostrotes Aussehen.

Bathonien.

Die Zonen der Parkinsonia ferruginea und der Oppelia aspidoides.

Das Bathonien stellt in Franken eine Zone von verhältnismäßig sehr geringer Mächtigkeit dar, doch ist diese durch die überall vorhandene Kalkbank mit *Oppelia aspidoides* gut charakterisiert.

1) Zeitschrift der Deutschen Geologischen Gesellschaft, 1901, p. 558 f.
2) Erwähnungswert ist, daß sich bereits in der oberen Region des Eisensandsteins äußerst feinkörniger Roteisenolith vorfindet, der sich stellenweise zu einem oder mehreren Flözen von verschiedenen Mächtigkeit (selten über 2 m) anreichert. Derselbe entspricht dem Gestein des Wasserfallinger Flözes, untercheidet sich von desselben durch die Armut beziehungsweise durch das Fehlen von Fossilien und die intensivere rote Farbe.

Mit den oben zu besprechenden Oolithen hat derselbe wenig Ähnlichkeit, einmal infolge des feineren Kornes, dann infolge des größeren Erzgehaltes. Kann man für die höher liegenden fossilhaltigen Oolithlagen eine sekundäre Einwanderung des Eisengehaltes annehmen, worauf Pomrcek (Jura-Ablagerungen, p. 196, Anm.) hinweist, so scheint dies für die Oolithe des Eisensandsteins ausgeschlossen zu sein.

Die Ausbildung des oberen Braunk. Jura im nördlichen Teile der Fränkischen Alb.

Den Übergang vom Bajocium zum Bathonien bilden schieferige dunkle Tone.

An einzelnen Lokalitäten (Wildenberg, Steinleite, Edelsfeld, Leyerberg) kommt das erwähnte Leitfossil in Form kleiner verküster Exemplare vor. Bei der Untersuchung dieser Lokalitäten zeigte sich, daß sowohl unter wie über den Lagen mit verküsten Stücken der Tone Phosphorite enthalten. Es findet also kein direkter Übergang von Kalk zu Pyrit statt, sondern stets treten zwischen diesen beiden Faciesarten die Phosphorite auf, sowohl im Bathonien wie im Callovien.

Nach oben wird das Bathonien durch die bereits erwähnte Kalkbank abgeschlossen. Diese enthält überall die *Oppelia aspidoides* und die *O. fusca* in großer Menge, ebenso stellenweise die *Terebratula varians*. Manchmal (Edelsfeld, Rothenberg bei Schmittach) erfüllt diese das Gestein derart, daß es mit den südwestdeutschen Vorkommen verglichen werden kann.

Während sich die petrographische Beschaffenheit dieser Kalkbank vom Hahnenkamm (bei Heidenheim) im Südwesten bis an die nordöstlichste Jurascholle bei Weißenbrunn kaum merklich ändert, nimmt sie im Südosten, zwischen Amberg und Regensburg ein anderes Aussehen an.

Jenseits der Naab, bei Schwandorf, tritt dagegen eine oolithische Kalkmergel-Facies auf, die man mit den *Humphriesianum* - und *Parkinsoni*-Oolithen der Weißenburg—Neumarkter Gegend verwechseln könnte, wäre sie nicht durch eine Unmenge von ganz charakteristischen Ammoniten gekennzeichnet. *Oppelia aspidoides* und einige bisher noch nicht näher bestimmte Perispinchen und Sphaeroocraten sind häufig. Auf dem sogen. Weinberg oberhalb Schwandorf sind diese Kalkmergel so reich an Oolith, daß sie früher ebenso wie die in der oberen Region des Eisen-

Weiter im Süden tritt das Gestein des Bathoniens nochmals in dem Aufschluß am Galgenberg bei Regensburg auf. Es wurde zuerst von v. AxMox (Jura-Ablagerungen, 1873, S. 21, Nr. 2) und dann von POMECKI (Jura-Ablagerungen, 1901, S. 160, 161) untersucht und sein Fossilinhalt namentlich von letzterem Autor beschrieben.

Das Bathionen ist also im Frankenjura nur wenig mächtig, aber durch ganz charakteristische und allenthalben häufig vorkommende Fossilien, namentlich Oppelia aspidoides, O. fusca und Rhynchonella varians ausgezeichnet. Infolgedessen bildet es einen sehr wertvollen und leicht erkennbaren Horizont.

Callovien.

Einteilung und Faciesarten.

Das Callovien umfaßt den obersten Schichtenkomplex des brannen Jura. Das Liegende bildet die eben beschriebene, meist kalkige Bank mit Oppelia aspidoides; im Hangenden sind die Weiß-Jura-Kalke.

Es möge nun zunächst ein Schema der paläontologischen Gliederung und dann ein solches der Faciesarten folgen:

Paläontologische Gliederung.

<table>
<thead>
<tr>
<th>Hangendes</th>
<th>Zone mit Perisphinctes chlorooolithicus (P. plicatilis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Callovien</td>
<td>Zone des Cosmoceras ornatum</td>
</tr>
<tr>
<td>Ornaton</td>
<td>Zone des C. Castor und C. Pollic</td>
</tr>
<tr>
<td></td>
<td>Zone des Cosmoceras Jason</td>
</tr>
<tr>
<td></td>
<td>Zone des Macrocephalites macrocephalus</td>
</tr>
<tr>
<td>Liegendes</td>
<td>Zone der Oppelia aspidoides.</td>
</tr>
</tbody>
</table>

Die Faciesarten (nach der Schichtenfolge geordnet):
- Kalkbänke,
- Tone mit Phosphoriten,
- Tone mit Pyritten,
- Tone mit Phosphoriten,
- Kalkbänke.

Die letztgenannten Faciesarten treten im fränkischen Callovien immer in der genannten Reihenfolge auf, und zwar so, daß sich die innerste Facies, also die Tone mit Pyritten, einem von Norden kommenden Keil vergleichbar, zwischen die Phosphorite einschiebt. Daraus ergibt sich, daß die Facies nicht an die einzelnen Zonen gebunden ist, sondern ganz unabhängig von diesen auftritt und sich verschiebt. Die nachfolgende Figur veranschaulicht das.

![Diagram](image)

Figur 2.
Verteilung der Faciesarten auf das fränkische Callovien.

Ganz so einfach und geradlinig liegen die Verhältnisse in der Wirklichkeit allerdings nicht, wie eine Vergleichung dieser Figur mit den beiliegenden, ebenfalls noch schematisierten Profilen über die Facies-Ausbildung zeigt.

Nun kommt noch ein weiterer Umstand hinzu, der sich bis jetzt der Beobachtung entzogen hat: Nach dem Ende der Callovien-Zeit wurde das gebildete Sediment teilweise durch die Meereswogen, beziehungsweise Meeresströmung zer-

Durch genaue Untersuchung dieser sekundären Ablagerungen war es möglich, die Facies des zerstörten Callovien teilweise zu rekonstruieren; die beiliegenden Profile geben die Rekonstruktionen.

Einfluß der Facies auf die Fauna.

Die durch die Facies bedingte Größe der Ammoniten steht im Widerspruch mit der jetzt allgemein anerkannten Annahme, wonach die lufterfüllten Schalen nach dem Tod des benthonisch lebenden Ammonitentieres zum Meeresspiegel emporstiegen, planktonisch wurden und dann durch Wellen und Strömungen weit fort vom Wohnort ihrer Tiere verfrachtet wurden, so daß „die Verbreitung der gekammernten Cephalopodenschalen unabhängig von der Verbreitung und den Lebensbedingungen der seinerzeit lebenden Tiere ist“. Doch läßt selbst Walther, dem diese Definition entnommen ist, die Möglichkeit einer Ausnahme zu, indem er

1) Quenstedt, Ammoniten S. 655.
Figur 3—5.

Die durch die Facies bedingten Größenverhältnisse der Ammoniten-Fauna.

a Macrocephalites tenuidus aus der Pyrit-Facies.
b „ „ „ Phosphorit-Facies.
c „ „ „ Kalk-Facies.

(Exemplare von durchschnittlicher Größe.)

(Einleitung in die Geologie S. 516) sagt: „Die Aufgabe künftiger Untersuchung muß es sein: Anhaltspunkte dafür zu gewinnen, ob eine Cephalopoden-reiche Ablagerung eine lokale primäre Fauna birgt, oder ob es sich um die Reste einer weithin verfrachteten Fauna handelt Nur wenn die Erklärung, daß die Ammoniten Treibkörper seien, die in jeder Tiefe, in jeder Bucht eines Meeresbeckens zur Ablagerung kommen konnten, auf Widerspruch stößt, wird man die lokalen Ammonitenfunde als Repräsentanten einer örtlichen Fauna auffassen dürfen.“

Außerdem ist noch folgendes zu erwähnen: An den pyritischen Stücken ist häufig die Wohnkammer zersprengt, zwischen den Schalenstücken bemerkt man eine schwammig aussehende aufgequollene Pyritmasse. QUENSTEDT bildet aus den verschiedenen Jura Zeiten wiederholt solche Stücke ab.1) Die Pyritmasse scheint sich direkt an den in Zersetzung befindlichen Weichteilen des Ammonitenkernes konzentriert zu haben. Ähnlich ist es in den Phosphorit-Gebieten. Die Phosphorite konzentrierten sich mit Vorliebe um die sich zersetzenden organischen Stoffe. Deswege trifft man so häufig Phosphoritkonkretionen, die den Ammoniten anhaften, oder Ammoniten, Belemniten, Kopfbruststücke von Krebsen u. s. w. in Phosphorittollen eingeschlossen. In solchen Fällen können die Ammonitenschalen wohl nicht planktonisch gewesen sein.

Es scheint also stellenweise im Callovien Franken, wenigstens in den Ablagerungen der Pyrit- und Phosphorit-Facies, eine lokale primäre Ammonitenfauna vorzuliegen.

Übrigens machte bereits v. AMMON auf den Größenunterschied zwischen den Stücken der Pyrit- und Phosphorit-Facies aufmerksam, indem er darauf hinweist, daß „die Ammoniten der Phosphorit-Knollen nicht mehr die Tracht der Goldschnecken besitzen und in ihren Dimensionen größer sind als die verkiessten Formen.2)

Zone des Macrocephalites macrocephalus.

(Hinzu ein Kärtchen; Textbeilage A.)

Ganz schematisch dargestellt würde das Profil der faciellen Ausbildung dieser Zone etwa folgendermaßen aussehen: (Fig. 6 siehe S. 71.)

a) Die Kalkfacies.

Die kalkige Ablagerung, die aus einer oder mehreren in tonige Schichten eingebetteten oolithischen Kalkböden besteht, darf als die normale Facies ange-

1) Zum Beispiel: QUENSTEDT, Ammoniten Taf. 19 Fig. 10; Taf. 23 Fig. 26; Taf. 24 Fig. 3; Taf. 50 Fig. 58; Taf. 83 Fig. 2. Auch bei den Belemniten (B. calloviscus) fand ich gelegentlich das im kalkigen Rostrum steckende vorkiezierte Phragmocon ähnlich zersprengt und mit aufhaftender aufgequilener Pyritmasse (z. B. Callovien bei Ludwang).

2) v. AMMON, Kleiner geologischer Führer, 1899, S. 24.
Die Ausbildung des oberen Brauen Jura im nördlichen Teil der Fränkischen Alb.

sehen werden, da dieselbe aus dem schwäbischen Jura kommend sich über das Ries, den Hahnenkamm u. s. w. bis in die Gegend von Pegnitz verfolgen läßt.

Von den tiefer liegenden Gesteinen unterscheiden sich diese Kalko durch die etwas größeren Oolithkörner. Der größere Brauneisengehalt bedingt auch eine mehr gelblich-bräunliche Färbung des Gesteins, während die Aspidoides-Bank auf dem frischen Bruch ein blaugranes Aussehen hat.

Außerdem tritt hier im untersten Callovien eine reiche charakteristische Ammonitenfauna mit großen Formen auf. Obwohl diese Kalkzone überall in dem erwähnten Gebiet gut und fossilreich ausgebildet ist, darf doch die Gegend von Troschenreuth als diejenige bezeichnet werden, wo die Kalke am schönsten und besten zu beobachten sind.

b) Die Phosphorit-Facies.

Die kalkige Facies der Macrocephalen-Zone macht nicht plötzlich der phosphoritischen Platz; es zieht vielmehr die sich allmählich in einzelne Kalkknollen von Brothlabiform auflösende Kalkbank noch auf eine Strecke unter den Tonen mit Phosphoriten nach Norden hin fort. Schließlich werden die Kalkknollen so klein, daß sie nur noch in frischen Aufschlüssen als Vertreter der Kalkfacies aufgefunden werden (z. B. bei Oberrüsselbach). Erst nördlich der Linie Rüsselbach—Pegnitz werden die Kalkbänke vollends durch die tonigen Ablagerungen ersetzt, die am Westrand der Alb eine Mächtigkeit bis zu 10 m erreichen.

Zunächst folgen über der Kalkbank mit Oppelia aspidoides stark oolithische Tone von durchschnittlich 0.5 m Mächtigkeit, in denen Phosphorit-Konkretionen liegen. Diese unterscheiden sich von den etwas höher liegenden Knollen des Ornamentons durch die unregelmäßige Gestalt und durch den Gehalt an Brauneisolith-Körnern, der letzteren fehlt.

In diesen Phosphoriten wurden Versteinerungen bisher nicht beobachtet. Diese liegen vielmehr lose in den Tonen. In der Gegend nördlich von Pegnitz, wo die Macrocephalen-Zone auf einen tonigen Komplex von ca. 0.5 m Mächtigkeit zusammengedrängt ist, kann man triplikate Perisphincten mit herrlich erhaltener Lobenzeichnung in Menge ausgraben. Macrocephalen sind in dieser Facies immer etwas Seltenes, kommen aber hin und wieder vor.

In den nördlichen und nordwestlichen Juragebieten, wo die Phosphoritfacies der Macrocephalen-Zone nur die wenig mächtige Unterlage der pyritischen Facies bildet, sind die Ammoniten dagegen meist verdreht und schlecht erhalten. Für die Juragegend zwischen Erlangen und Staffelstein sind in dieser Phosphorit-Unter-
lage kalkige Schalenbruchstücke sehr großer Perispincenten, denen häufig noch ein phosphoritischer Kern anhaftet, ganz charakteristisch.

c) Die Pyrit-Facies.

Der bis zu 10 m mächtige Schichtenkomplex des Callovien am Westrand der Alb gehört mit Ausnahme der eben erwähnten wenig mächtigen Phosphorit-Unterlage ausschließlich der pyritischen Macrocephalen-Facies an. Es sind schieferige Tone, die auf ihren Schichtflächen die herrlich verkiisten kleinen Ammoniten tragen. Wo Wege durch diese Schichten führen, oder wo Äcker auf ihnen angelegt sind, kann man die auswitternden „Goldschneckchen“ in Menge auflesen.

Der Ornatenton.

Endlich sind die Cardioceraten seltene und infolge ihres Erhaltungszustandes schlechte Leitfossilien im Fränkischen Callovien. In den schieferigen Tonen mit Phosphoriten, also dort, wo die Schichten noch völlig intakt sind, findet man auf den Schichtflächen eine reiche Ammonitenfauna in Form von Tonabdrücken ohne festen Kern. Die Ammoniten sind in diesem Fall plattgedrückt und meistens ist nur die eine Flankenseite sichtbar. Unter dieser Fauna kommen nun merkwürdigerweise Arten vor, die man noch nicht an die betreffenden Lokalitäten als Steinkerne aufwand. So fand ich beispielsweise bei Bondorf (unfern Schnaittach) das Cosmoceras ornatum und bei Oberbuechfeld (östlich von Neumarkt) den Oecoptychius refractus als Tonabdrücke. Hier ist speziell darauf hinzuweisen, daß Abdrücke von Arten, die unzweifelhaft der Gattung Cardioceras beziehungsweise Quenstedticeras angehören, häufig als Schieferabdrücke vorkommen und zwar bereits in der Zone des Cosmoceras Castor und C. Pollux, hauptsächlich aber mit C. ornatum.

Da also die Cardioceraten bereits im mittleren fränkischen Ornatenton zusammen mit Cosmoceras Castor und C. Pollux auftreten, ihr schlechter Erhaltungs- zustand jedoch die Bestimmung nach Arten sehr erschwert, sind sie zur Zonen- Bestimmung wenig brauchbar; es ist daher notwendig, andere Leitfossilien aufzu- stellen. Das sind die Cosmoceraten. Sie halten überall in den hier in Betracht kommenden Gegenden ihr ganz bestimmtes Lager ein, treten auch zahlreich und in wohl erhaltenden Exemplaren auf.

Für die Biarmatenzone, also für die anderwärts über Cosmoceras ornatum folgende Schicht, konnte bisher kein typisches Zonenfossil gefunden werden. Cardioceras Mariae und C. Lambertii treten in anderen Juragebieten bereits mit Cosmoceras ornatum auf, während andererseits Cardioceras cordatum bis in die Transversarius- Zone reicht. Vielleicht gelingt es bei weiterem Forschen in Frankenjura eine Stelle zu finden, an welcher der Ornatenton vor Ablagerung der Weiβjura-Kalke nicht der Zerstörung anheimfiel und sich während der ganzen Biarmaten-Zeit Sedimente ablagerten, so daß dann die Vertreter der fränkischen Biarmaten-Zone beobachtet und festgestellt werden können.

Die von Wanderer) bei Münchshofen a. Naab aufgefundene Kalkbank mit Cardioceras cordatum ist ein Beweis, daß dies nicht unmöglich ist. Leider sind aber hier am Ostrand die Schichten des Callovien auf eine ganz geringe Lage von kaum 50 cm Mächtigkeit zusammengeschrampt und außerdem verhältnismäßig arm an charakteristischen Ammoniten-Arten, so daß diese Lokalität den gewünschten Aufschluß nicht geben kann. Dennoch läßt sie zusammen mit den übrigen Auf- schlüssen in der Burglengenfelder Gegend eine wichtige Folgerung zu:

Über der Oolithkalkbank mit Microcephalites macrocephalus folgen tonige Schichten, die meist sehr schwach sind und nur selten 1 m mächtig werden. Sie sind durchweg glaukonitisch, namentlich die oberste Partie besteht zuweilen nur noch aus Grünsand (z. B. bei Regenstauf); stellenweise sind sie reich an Phosphorit- geröllchen, welche die Fauna des gesamten Ornatontons einschließen (Premberg, Regenstauf, Groß-Saltendorf). Alle diese Stücke sind, nach ihrem Erhaltungs- zustand zu urteilen, nicht mehr in ihrer ursprünglichen Lagerung. Bei Münchshofen ist nun in die oberste Partie dieser glaukonitischen Tonmergel stellenweise ein dunkel- braunes Mergelhänchen (Wanderer, l. c. S. 526 Nr. 12) eingelagert, welches nach Wanderer: Cardioceras cordatum, Card. vertebrale und Oppelia paturattensis als kalkige, teilweise mit Brauneisen überzogene Versteinerungen einschließt. Diese Stücke sind sehr gut erhalten und zeigen keine Spur von nachträglicher mechani- scher Zerstörung, wie ich mich durch wiederholte Nachgrabungen an Ort und Stelle überzeugte. Daraus ergibt sich, daß entweder die erwähnten Ammonitenschalen noch nicht abgelagert waren, als die Ornatontone längst sich gebildet hatten und wiederum zerstört worden waren, oder daß sie sich während einer verhältnismäßig ruhigen Zeit, die in die Denudations-Periode fällt, ablagerten und verfestigten. Letzteres scheint mit das Wahrscheinlichere zu sein.

In den direkten darüber liegenden Weiβjura-Kalken und Mergeln mit Peri- sphinctes plicatilis und P. chlorooolithicus, die namentlich in der Burglengenfelder Gegend gut entwickelt sind und hier den letztgenannten von Gümbel (Frankenjura, S. 121) abgebildeten Ammoniten einschließen, wurde bisher Cardioceras cordatum noch nicht gefunden, dagegen von Pompecki am Keilberg bei Regensburg in der

1) K. Wanderer, Jura-Ablagerungen, S. 526.
Zone des Cosmoceras Jason.

Die Jasonzone ist mit Ausnahme einiger Striche, wo die Denudation bis hinab auf die Macrocephalen-Zone reichte (Leyerberg, Wildenberg, Bernricht), im ganzen Frankenjura nachweisbar. Ihre schönste und beste Entwicklung, die allerdings kaum eine Mächtigkeit von 1 m überschreitet, erlangt sie am Westrand der Alb zwischen Ebermannstadt und Lichtenfels. Sie ist hier als Tonlage mit verkiesten Ammoniten vorhanden.

Bei Uetzing gelang es nach verschiedenen resultatlosen Grabungen an den hiefür günstig erscheinenden Plätzen das weiter vorne beschriebene wichtige Profil aufzuschließen, wodurch die völlige Unabhängigkeit der Jason-Zone von der Macrocephalen-Zone in dieser Gegend nachgewiesen ist.

Im ganzen übrigen Gebiet des Frankischen Jura südlich der Linie Gräfenberg-Pegnitz ist diese Zone, wie überhaupt der ganze Ornamenton, soweit er vorhanden ist, nur in Form von glaukonitischen Tonschichten mit phosphoritischen Versteinerungen ausgebildet.

Was den paläontologischen Charakter der Zone anbelangt, so tritt hier bereits die Reineckia anceps auf, um dann in der C. Castor-Pollux-Zone ihren größten Individuen-Reichtum zu erlangen.

Der in der obersten Region der Macrocephalen-Zone auftretende Kepplerites calloviensis reicht noch bis in die Jason-Zone, namentlich am Westrand der Alb, wo er in schönen Stückchen gefunden wird.

Von den Hecticoceraten gehören auch mehrereGattungen hiervor, doch sind dieselben meist als wenig charakteristische Jugendexemplare vorhanden. Als
Die Ausbildung des oberen Brauner Jura im nördlichen Teile der Fränkischen Alb.

sieher zur Jason-Zone gehörig kann daher nur das sich reichlich in der Scheiblitzer Gegend vorfindende Hecticoceras lunula gelten.

Zone des Cosmoceras Castor und C. Pollux.

(Hinzu ein Kärtchen: Textbeilage C.)

Diese beiden Ammoniten sind für den fränkischen Ornamenton zwei äußerst charakteristische Formen, die ihr ganz bestimmtes Lager zwischen der Jason- und Ornament-Zone einhalten, während sie in den übrigen Juraländern viel weniger als Leitfossilien zur Geltung kommen. Außerdem sind für diese Zone noch folgende Ammoniten ganz charakteristisch:

Stephanoceras coronatum Brug.

Strigoceras pustulatum Reineck.

Oeocyptichus refractus Reinhard.

Ihre schönste Entwicklung erlangt die Zone zwischen Kasendorf und Pegnitz, wo sie die Hauptmasse des Ornamentons ausmacht. Das hieß für das meiste charakteristische Profil ist Bodendorf b. Trockau.1) Bezüglich der Fauna sei auf die Fossilplatte bei Profil Bodendorf-Trockau verwiesen.

Zone des Cosmoceras ornatum.

Die Ornatum-Zone ist nur an wenigen Stellen des nordöstlichen Frankenjuras erhalten und bildet als solche das höchst Glied des Ornamentons, das noch in seiner ursprünglichen Lagerung beobachtet werden konnte. Die Stellen des Vorkommens sind:

1) bei Bondorf untern Schnaittach (phosphoritisch).
2) auf der Steinleite zwischen Lochau und Busbach (phosphoritisch).
3) auf dem Burgstall bei Obernsees und der Jurascholle zwischen Ober- und Wohndorf (teilweise pyritisch).
4) bei Troschenreuth (phosphoritisch).

Außer diesen Vorkommen werden voraussichtlich im Lauf der Zeit noch weitere gefunden werden.

Die Untersuchung der genannten Plätze ergab, daß jeweils nur der untere Teil der Ornatum-Zone vorliegt, denn über den geschieferten, primär abgelagerten Tonen folgen noch Geröllte mit Cosmoceras ornatum und Perisphinctes sulciferus, außerdem Bruchstücke von Pollioceras athleta. Ein auf der Steinleite gegrabenes Geröll mit Cardioceras spec. mag besonders noch erwähnt werden. Es ist daher

Charakteristische Begleiter des *Cosmoceras ornatum* sind:

- *Cosmoceras Duncanii* Sow.,
- *Perisphinctes sulciferus* Opp.,
außerdem kommen hin und wieder Bruchstücke vor von:
- *Peltoceras athleta* Phil.,
- *Perisphinctes Orion* Opp.,
- *Distichoceras bipartitum* Qu.

Die Grenzschicht zwischen Callovien und Oxford.

Nach Oppels Juraformation sind für das untere Oxford folgende paläontologische Charaktere bestimmend:

<table>
<thead>
<tr>
<th>Zonen</th>
<th>Arten, die auf die Zone beschränkt sind</th>
<th>Arten, die von einer Zone in die andere übergehen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxford</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Mittleres Oxford | *Anm. biarmatus*
| | " cristatus
| | " Eugeni
| | " Heurici | |
| Biarmaten-Zone | *Anm. athleta*
| | " ornatus
| | " Duncanii
| | " bicostatus
| | " Orion
| | " sulciferus | |
| **Callovien** | | |
| Athleta-Zone | *Anm. plicatilis*
| | " cordatus
| | " perarmatus | |
| | *Anm. Mariae*
| | " Lambertii
| | " Lalandeanus | |

Im Frankenjura finden sich von diesen Arten die allein der *Athleta-Zone* angehörenden, ferner die von der *Athleta- in die Biarmaten-Zone* hinaufreichenenden sowohl in den anstehenden Schichten mit *Cosmoceras ornatum* (z. B. Steinleite-Wohnsdorf), wie in den Geröll-Lagen.

Die ausschließlich für die Biarmaten-Zone charakteristischen Arten sind bis jetzt aus dem fränkischen Jura noch nicht bekannt, dagegen kommen die in der Biarmaten-Zone beginnenden Formen im Oberpfälzer Jura vor. Es fehlt also nur die eigentliche Biarmaten-Zone. Sieht man sich nach einem verhältnismäßig vollständigen der vorliegenden fränkischen Profile um, also etwa nach dem Profil Steinleite, so ergibt sich das Vorhandensein folgender Zonen:

Oxford: Zone des *Peltoceras transversarium* mit *Perisph. plicatilis.*

Geröll-Lage.

Callovien: Zone des *Cosmoceras ornatum.*

- " *Cosmoceras Castor* und *S. Pollex.*
- " *Cosmoceras Jason.*
Da alle Zonen bis auf die Biarmaten-Zone in der schönsten Vollständigkeit vorliegen, so muß auch zur Biarmaten-Zeit das fränkische Jurameer bestanden haben; da aber keine Ablagerungen aus dieser Periode vorliegen, müssen besondere Verhältnisse deren Ablagerung verhindert haben. Dieses Rätsel wird durch die Geröll-Schicht gelöst. Während in anderen Meeresteilen zur Biarmatenzeit Auflagerungsflächen entstanden, war der gleichzeitige fränkische Meeresboden eine Denudationsfläche.1) Dort setzten sich die Schichten mit Amm. biarmatus, cristatus, Eugeni und Henrici ab, hier wurden die älteren Sedimente aufgerissen, ihr Gesteinsmaterial abgerollt und damit zugleich die auf den Boden sinkenden Ammoniten- Schalen zertrümmert. Diese Denudations-Vorgänge spielten sich wahrscheinlich die ganze Biarmatenzeit hindurch ab. Dort, wo die Denudation zeitweise ausgesetzt, oder nicht so intensiv wie anderwärts wirkte, konnten sich Sedimente bilden und erhärten; begann dann wieder lebhaftere Bewegung des Wassers, so konnten die neuentstandenen Sedimente entweder wieder zerstört oder mit älterem von anderwärts herbeigebrachtem Sediment-Material überschüttet werden. Auf letztere Weise entstand wohl das Kalkmergelbänkchen mit Cardioceras cardatum, C. vertebrale und Oppelia paturattensis bei Münchhofen. Das eisenschüssige Kalkgestein, das in der südlichen Oberpfalz unter den glaukonitischen Weißjurakalken mit Perisphinctes plicatilis liegt und dessen Äquivalent am Keilberg nach Pompeji: Cardioceras cardatum und P. plicatilis ergab, scheint auf ruhigere Verhältnisse am Meeresboden hinzuweisen; war es eine Meeresströmung, welche die Denudation verursachte, so kann dieselbe ihre Richtung verlegt haben.

Mit dem Beginn der Transversarium-Zone scheinen die Denudations-Vorgänge aufgehört zu haben, so daß von nun an wieder Auflagerungsflächen existierten. Die glaukonitischen gelben Kalke, mit denen der Weiße Jura beginnt, sind regelmäßig über die ganze Fränkische Alb verbreitet und geben allenthalben einen konstanten, leicht zu erkennenden Horizont.

Nachdem nun die einzelnen Zonen des Brauen Jura besprochen sind, möge noch eine Tabelle die paläontologischen Charaktere des Fränkischen Callovians veranschaulichen, wie sich dieselben aus den vorliegenden Untersuchungen ergeben.

Phosphorite des fränkischen Calloviens.

Fig. 1. Phosphorit-Konkretion auf Hecticoceras pseudopunctatum LAM. Aus dem normal gelagerten Ornamenton von Ober-Buchfeld (bei Neumarkt i. Opf.).

Fig. 2. Phosphorit-Geröll mit Hecticoceras pseudopunctatum LAM. Aus der Gegend von Hersbruck, Sammlung des paläontologischen Instituts in München.

Fig. 3. Phosphorit-Konkretion aus den Tönen mit Parv. ferruginea. Auerbach i. Opf. (1/2 d. nat. Größe).

Fig. 4. Phosphorit-Geröll aus den Geröll-Lagen des Ornamentons. Hartmannshof. (1/2 d. nat. Größe).
Das fränkische Callovien.

Die Zonen des fränkischen Callovien mit ihrer Ammoniten-Fauna.

<table>
<thead>
<tr>
<th>Zonen</th>
<th>Arten, die auf die Zone beschränkt sind</th>
<th>Arten, die von einer Zone in die andere übergehen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Perisphinctes plicatilis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>″ Martelli</td>
</tr>
<tr>
<td></td>
<td></td>
<td>″ Wartae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>″ chlorooolithicus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pelloceras perarnatum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cardioceras cardatum</td>
</tr>
<tr>
<td>Oxford</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apidoceras biarmatum</td>
<td></td>
<td>Cardioceras Lambertli</td>
</tr>
<tr>
<td></td>
<td></td>
<td>″ Mariae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cosmoceras ornatum</td>
<td>Hecticoceras kankaense</td>
</tr>
<tr>
<td></td>
<td>″ Dunoani</td>
<td>″ nodosulcatum</td>
</tr>
<tr>
<td></td>
<td>Pelloceras Athleta</td>
<td>″ pseudopunct.</td>
</tr>
<tr>
<td></td>
<td>Perisphinctes Orion</td>
<td>″ punctatum</td>
</tr>
<tr>
<td></td>
<td>″ subiferus</td>
<td>″ rossiene</td>
</tr>
<tr>
<td></td>
<td>Distichoceras bipartitum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cosmoceras Castor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>″ Pollux</td>
<td></td>
</tr>
<tr>
<td></td>
<td>″ Gulielmi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reineckia Fraasi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>″ Stübeli</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stephanoceras coronatul</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stripeceras pustulatum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oocystichins refractus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hecticoceras Brighti</td>
<td></td>
</tr>
<tr>
<td></td>
<td>″ succum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cosmoceras Jason</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hecticoceras bunuda</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Macrocephalites macrocer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>″ tumidus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>″ Herceyi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Perisphinctes curypyleichus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>″ funatus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>″ cf. Steinmanni</td>
<td></td>
</tr>
<tr>
<td></td>
<td>″ subtilis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>″ cf. variabilis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proplanulites subbucalis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kepplerites Gowerianus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hecticoceras heticum</td>
<td></td>
</tr>
</tbody>
</table>
Die Geröll-Lage.

Fast überall im ganzen Frankenjura und in den angrenzenden Teilen des Schwäbischen finden sich in der obersten Region der Ornatenton eigentümliche Knollen, die schon seit langer Zeit den Juraforstern aufgefallen sind, ohne indessen eine eingehende paläontologische Untersuchung erfahren zu haben. Man begnügte sich damit, dieselben als eine den Geoden der Liastone gleiche Bildung zu bezeichnen, die bald die Ammoniten der einen, bald der anderen Ornatentoneinschloßen.

Lange war auch mir das Wesen dieser Knollen im Ornatenton etwas Unerkennbares, bis sich endlich durch die bei den vielfachen Aufgrabungen gemachten Beobachtungen herausstellte, daß der ganze Ornatenton in zwei große Schichtenkomplexe geteilt werden kann, und daß die in diesen Schichten enthaltenen Gesteine und Versteinerungen bestimmte Merkmale aufweisen. Diese Schichtenkomplexe sind:

1) (oben) Tone ohne Ammoniten-Abdrücke auf den Schichtflächen, jedoch mit vielen abgerollten Phosphorit-Konkretionen und abgerollten phosphoritischen Steinkernen von Ammoniten,

2) (unten) Tone mit unregelmäßig gestalteten Phosphorit-Konkretionen und mit vielen Ammoniten, die teils als phosphoritische Steinkerne, teils nur als Abdrücke auf den Schichtflächen erhalten sind.

Zunächst möge hier auf den ganz wesentlichen Unterschied zwischen Phosphorit-Konkretion und Phosphorit-Geröll hingewiesen werden. Fig. 1 und 2 der Textbeilage E stellen die beiden Extreme dar. Die erste Figur zeigt einen Ammoniten aus der unteren noch in ihrer ursprünglichen Lagerung erhaltenen Schicht; um ihn herum hat sich eine Phosphorit-Konkretion gebildet.

Die zweite Figur der Textbeilage E zeigt als entgegengesetztes Extrem einen aufgeschlagenen phosphoritischen Knollen, in dem ein ähnlicher Ammonit steckt, der ursprünglich teilweise aus dem Knollen herausragte, allerdings nicht in dem Maße wie bei Fig. 1.

Bei der Zerstörung des Sediments wurde diese Art von Konkretionen aus dem umhüllenden Ton herausgerissen und derart durch das Umherrollen mit anderen Phosphoriten abgeschliffen, daß die runde Form entstehen konnte, welche kaum mehr den Querschnitt des Ammoniten auf der Außenseite erkennen läßt. In einem solchen Fall kann man von „Geröll“ sprechen und die Schicht, in welcher solche Stücke liegen, als „Geröllschicht“ oder „Geröll-Lage“ bezeichnen.

Diese beiden Stücke stellen die extremsten Bildungen dar. Indessen sind die meisten Stücke, die gefunden werden, selten so charakteristisch, werden aber von einem geübten Auge leicht als zu der einen oder anderen Gruppe gehörig erkannt. In den normal gelagerten Tonen sind die phosphoritisch versteinerten Ammoniten auch häufig ohne anhaftende Konkretionen enthalten; dann sind sie aber meistens durch das Gewicht der aufliegenden Gesteinsmassen zerdrückt. Es liegen in diesem Fall immer alle Bruchstücke beisammen.

Die weiteren Abbildungen auf der Textbeilage E zeigen ebenfalls noch Phosphorite. Fig. 4 ist ein Geröll, das nicht nur verschiedene Ammoniten, sondern auch zwei Stücke von *Belonites calloeiensis* und ein Gasteropoden-Fragment ein-
schließt. Fig. 3 stellt im Gegensatz zu diesen Stückden aus dem Ornatenton eine (unten abgebene) knochenähnlich geformte Konkretion aus den Tonen mit Parkinsonia ferruginea vom Zogenreuther Berg bei Auerbach dar. Sie soll die Form einer fossilen Konkretion zeigen.

Als eine weitere Art dürfen Phosphorite, die Wirbelstücke von Sauriern, (wahrscheinlich Plesiosaurus) enthalten und im Ornatenton bei Premberg (unfern Burglengenfeld) vorkommen, bezeichnet werden.

Diese Ablagerungen sind nur so zu erklären, daß die Ornatentone, die hier verkristete Ammoniten enthielten, zerstört wurden, daß aber bei der Zerstörung die aus leicht zersetzbarem Pyrit bestehenden Einschlüsse vollständig zerfielen. Bei dem Zersetungsprozeß entstand Schwefelsäure; diese bildete mit den tonigen Substanzen Alaun und Gips, die aufgelöst und weggeführt wurden. Der Eisengehalt blieb zurück und ist nun in den rostigen Partieen enthalten.

Die Glaukonit-Schicht.

Zunächst sei, um Irrtütern vorzubeugen, darauf hingewiesen, daß sowohl die jüngste Braunjura-Schicht, wie die unterste Weiβ-Jura-Bank Glaukonit enthalten. Es müssen deshalb folgende zwei Bildungen unterschieden werden:

1) (oben) die Grünoolith-Kalkte des untersten Weiβen Jura mit Perisphinetes plicatilis (Transversarius-Zone),

2) (darunter) die glaukonitischen Tone des obersten Braunen Jura, deren oberste Lage hier die „Glaukonit-Schicht“ genannt sei. Von letzterer ist im Folgenden die Rede.

Die Glaukonit-Schicht ist fast über den ganzen Frankenjura verbreitet und liefert überall ein außerordentlich brauchbares Kennzeichen für die obere Grenze der Ornatentone.1)

Es hat dies nicht nur wissenschaftlichen, sondern auch praktischen Wert und zwar bei den Quellfassungsarbeiten im Ornatenton. Hat man unter den Weiβ-Jura-Bänken die grüne

1) v. Ammon wies dieselbe auch noch in Niederbayern bei Vogtarn (in der Passauer Gegend) nach.
Tonschicht angeschnitten, so ist die wassertragende Schicht erreicht und ein Tiefergraben unnötig.

Bei den vorliegenden Untersuchungen gelang es nachzuweisen, daß der Glaukonit über den ganzen Ornamententon verbreitet ist, soweit er Phosphorite enthält.1) In Schichten, in denen verkieste Versteinerungen und Pyrit-Konkretionen vorkommen, ist kein Glaukonit. Hier und da (z. B. bei Bernricht) reichen die Glaukonitkörner bis in die phosphoritische Region der Macrocephalen-Zone hinauf.

Durch die am Ende der Ornamentzeit eingetretene Zerstörung der tonigen Sedimente wurden die Ablagerungen einer Aufbereitung, also einer Schlämmung unterworfen. Die schweren Phosphorite wurden kaum auf größere Strecken verschleppt, sie sanken vielmehr in die aufgewühlte und wieder abgesetzte Schlamm-Masse ein, sobald sich die Wellen etwas beruhigten; die feinen Glaukonitkörnern dagegen blieben länger in dem bewegten Wasser schwimmen und setzten sich erst später ab. Der Umstand, daß die Glaukonitkörner stellenweise zu Glaukonitands konzentriert sind, läßt auf eine nochmalige spätere Auswaschung durch das schwach bewegte Wasser schließen. Das tonige Material, das leichter suspendiert blieb, scheint streckenweise durch das Wasser forttransportiert worden zu sein, denn nur so ist es erklärlich, daß z. B. in der Burglengenfelder Gegend und bei Regenstauf die Phosphorit-Gerölle direkt in der Glaukonit-Bank liegen.

Zusammenfassung und Folgerungen.

Eine Zusammenstellung der einzelnen Abschnitte des zweiten Teiles ergibt folgendes:

Das Fränkische Braunjura-Meer war eine Bucht, deren Küsten im Osten die Urgebirge des Fichtelgebirges und des Bayerischen Waldes bildeten; im Süden muß ebenfalls ein Urgebirgsrücken als Festland existiert haben, der jetzt von den Tertiärbildungen der oberbayerischen und schwäbischen Hochebene bedeckt wird (die Vindelische Halbinsel Gümbels).

1) Walther (Einleitung in die Geologie) weist wiederholt darauf hin, daß Glaukonit und Phosphat-Konkretionen zusammen in recenten Ablagerungen vorkommen. Glaukonit fehle dagegen überall da, wo viel Eisenoxydhydrat oder viel Flußschlamm ist.
Zur Liaszeit und während der ersten Braunjura-Periode nahm eine Flachsee diese Bucht ein. Nach Ablagerung des Opalinus-Tones wich infolge von Überflutungen fernliegender Festländer im Osten die See zurück, wodurch die Bucht mehr oder weniger trocken gelegen wurde. Die Ablagerung toniger Bestandteile hörte nun auf; es treten sandige Sedimente an deren Stelle (Eisensandstein).

Während auf dem Festland die Oxydation (durch den Sauerstoff der Luft) vorherrscht, macht sich unter stetiger Wasserbedeckung die Reduktion geltend. Letztere ist veranlaßt durch die allenthalben im Wasser enthaltenen organischen Stoffe, die sich zu zersetzen suchen und den hierzu nötigen Sauerstoff nicht nur dem Wasser entziehen, sondern auch reduzierbaren Oxyden, wozu namentlich die Eisenoxyde gehören. Deshalb sind die sich im Wasser bildenden Ablagerungen gewöhnlich grau, bläulich, grünlich oder farblose (Ton, Kalk, Sand), während die an der Luft entstehenden Verwitterungsprozesse gelbe, rote oder braune Farbtöne besitzen. Auf dem Festland machen sich diese Farben auch dort bemerkbar, wo sich gelöste Eisenoxydul-Salze oxidieren; sie scheiden sich dabei als unlösliche Verbindungen aus dem Wasser ab und überziehen Gesteine, Ge- röll und Sand. Dieser Fall, wo der Grundwasserspiegel so hoch steht, daß er noch in die Region der Pflanzenurzein reicht (Moore, Sumpfe). Die Wurzeln reduzieren die allenthalben im Boden enthaltenen Eisenoxide; dadurch entstehen lösliche Oxydul-Salze, die nun vom Grundwasser aufgenommen werden. Dort, wo dieses eisenhaltige Wasser zutage tritt oder abfließt, macht sich die Wirkung der Luft bemerkbar; die farblosen in Lösung befindlichen Eisensalze werden oxydiert und als braune Oxydul-Salze ausgeschieden. Auf ähnliche Weise werden dort, wo die Grundwasserstände
Es erfolgte nun (mit Beendigung der Marchizonae-Zone) eine Transgression des Meeres, indem dasselbe — wahrscheinlich vom Nordosten her — die fränkische Bucht wieder überflutete. Mit der Verflachung des Wassers kehrte auch die Meeresfauna zurück, deren Reste in den Kalksandsteinen der Sowerbyi-Zone erhalten sind. Die Fauna besteht zunächst aus Bivalven, deren zerbrochene Schalen färmliche Muschelbänke bilden; Ammoniten treten nur spärlich auf, erst in den oolithischen Kalkmergeln der Humphriesianum-Zone werden die kleineren Formen häufig.

Die Sedimente bestehen von nun an bis zum Beginn der Transversarius-Zeit (Weißer Jura) aus Tonen mit eingelagerten Kalkmergeln und Kalkbänken. Bis ins untere Callovien hinein sind die Sedimente oolithisch. (Die rostrte Farbe der die Oolithkörner einschließenden Mergel ist keineswegs primär. Diese Gesteine haben an noch unverändernten Stellen eine bläuliche Farbe, enthalten also Eisenoxydul-Salze; erst unter dem Einfluß von Luft und Feuchtigkeit gehen diese in Oxide über und bekommen dann die für die verwitterten Mergel charakteristische rostrate Farbe.)

Die Kalkbänke im fränkischen Braunken Jura vertreten stets die gleichzeitigen (analogen) mächtigeren Bildungen anderer Juragebiete. Ganz abgesehen von ferner gelegenen Juraländern macht sich diese mit dem Facies-Wechsel eintretende verschiedene Mächtigkeit im Frankenjura selbst deutlich bemerkbar. So entsprechen:

den harten dichten Kalkbänken des oberen Bajociens (Humphriesianum-Zone) zwischen Gräfenberg und Scheiblitz (Minimum 0,2 m) die stellenweise bis 3 m mächtigen Oolith-Mergel der übrigen Jurastriche;

der harten Kalkbank des Bathoniens (Aspidoides-Zone) in Franken (ca. 0,2 m) die über 1 m mächtigen oolithischen Mergel bei Schwandorf i. Opf.;

der Macrocephalen-Bank am Keilberg bei Regensburg (0,5 m) die 10 m mächtigen Tone mit Pyriten am Westrand der Alb.

Ich möchte diese Facies-Verschiedenheiten nicht auf Unterschiede in der Tiefe des Meeresbeckens zurückführen, da solche kaum geherrscht haben. Die Mächtigkeit der unter den Oolith-Schichten liegenden Eisensandsteine schwankt innerhalb des Frankenjuras im höchsten Fall um einen Betrag von 50 m und über den Oolithen folgen wieder gleichmäßig abgelagerte Schichten (z. B. die Kalkbank mit Perispinutures plicatilis). Geringe Unterschiede in der Tiefe des Meeres können aber kaum von Einfluß auf die Art der Sedimente gewesen sein. Es mögen die Facies-Verschiedenheiten vielmehr auf verschiedenenartige Bewegungen des Meerswassers zurückzuführen sein. Die Oolith-Mergel entlen auf schlammige Sedimente, die durch Flüsse mit geringem Gefall den Küsten zugeführt und durch die Meereswellen weiter verbreitet wurden. Die harten dichten Kalkbänke dagegen bildeten sich nur langsam als chemische Sedimente in Meeresteilen, wo Meeresströmungen die Ablagerung mechanischer Sedimente verhinderten.1)

wechseln, Kiese und Sande durch Eisenoxyd-Anlagerungen braun gefärbt; so entstehen die häufig in Kies- und Sandgruben zu beobachtenden horizontalen braunen Streifen. Übrigens findet auch in den oberen Wasserschichten Oxidation statt, da hier fortwährend Luft und damit auch Sauerstoff aufgenommen wird.

In der Kalkstein-Facies der *Humphriesianum*-Zone machen sich stellenweise die Wirkungen von Denudationsvorgängen oder wenigstens einer Unterbrechung in der Ablagerung bemerkbar, indem die obere Lage nicht mehr als geschlossene Kalkbank vorliegt, sondern nur mehr aus einzelnen gerundeten brotläbformigen Stücken besteht, die häufig von Bohrmuscheln angebohrt sind (Leyerberg, Friesen-Frankendorf).

Eine ähnliche Erscheinung ist an einzelnen Stellen an der *Aspidoides*-Bank zu beobachten, z. B. bei Obertrüsselbach und bei Kasendorf; dort ist sie nur noch in Form großer gerundeter Knollen vorhanden.

tragen können, das sie dort als mechanisches Sediment ablagern, kommen die Meeresströmungen wenig mit Litoralgebieten in Berührung, führen also selten Sedimentstoffe mit sich und lassen außerdem das niedersinkende Material nicht zum ruhigen Absatz gelangen.
Die Ausbildung des oberen Braunkreides des nördlichen Teiles der Frankischen Alb.

Über die Entstehung der Phosphorit-Konkretionen hat sich Gėmeli1) folgendermaßen ausgesprochen: "Denk man sich in den ursprünglich reichen, schlammartigen Tonmassen die sich später konzentrierende (Phosphorit-)Substanz ziemlich gleichmäßig verteilte, so werden sich bei der allmäßlichen Verfestigung der Massen da und dort zuerst feste Teile ausgeschieden haben, vielleicht um einen organischen Körper. Diese bildeten nun den Mittelpunkt, um welchen sich die homogenen Massenteilchen aus der nächsten Nachbarschaft der erhärteten Schlammvlage anammelten und sich zwischen die Tom- oder Mergelpartikeln festsetzten. Es ist dies ein Vorgang, der analog der Kristallisation von Flüssigkeiten verläuft, wobei die gelösten Stoffe sich zu dem erstgebildeten Kristallteil nähern und heranziehen. Derart Konzentrationsprozeß dauerte solange fort, bis der Stoff in der Nähe der Zentren erschöpft war und ein neuer Zugang nicht mehr stattfinden konnte."

Aus den letzten Jahren liegt eine Abhandlung über recente Phosphorite von Collet vor.2) Derselbe untersuchte das phosphorit-Material, welches durch die Schiffe des "Department of Agriculture" am Kap der guten Hoffnung mittels Dredgen erhalten worden war. Die Phosphorit-Konkretionen bestanden zur Hälfte aus Stückchen, deren Größe 8:16 cm betrug, die übrigen hatten Durchmesser von 5 mm an bis zu 6 cm; das größte Stück hatte 23:16:12 cm. Alle Konkretionen waren unregelmäßig gefaltet; mit Anschnitten bedeckt oder von Lüften durchzogen. Collet teilt diese Phosphorite in zwei Gruppen: 1) die solche, welche Schalen von Foraminiferen oder Mollusken einschließlich von 2) solche ohne organische Reste; hier vertritt das Kalkphosphat lediglich das Bindemittel, welches Glaukonitkörner und mineralischen Detritus (Quarz-, Turlamin-, Zirkon- und Feldspat-Teilchen) verkittet.

Bezüglich der Herkunft der Phosphorsäure schließt sich Collet an die bereits früher von Murray3) aufgestellte Hypothese an, wonach plötzlich ein treffender Temperaturenwechsel im Meerwasser den Tod der Meeresstiere herbeiführt, die sich an der Meeresoberfläche oder in deren Nähe aufhalten. Die toten Körper hüllen sich am Meeresboden auf; durch ihre Zersetzung entsteht zunächst Ammoniak und Phosphorsäure, dann Ammoniumphosphat und phosphorsaurer Kalk. Die starken Temperaturwechsel treten dort auf, wo kalte und warme Meeresströmungen sich begegnen. So trifft an der Agulhas-Bank von der Collets Phosphorite stammen, die warme Strömung, die vom Aquator her durch die Mozambique-Strasse kommt, mit der kalten Antarktik-Strömung zusammen.

Ist die See an solchen Stellen sehr tief, so scheinen sich sowohl die Weichteile der Seeleere, wie die Muschelschalen zu zersetzen, bevor sie den Meeresboden erreichen. (Es kann aber auch der hohe Druck, unter dem das Wasser der Tiefsee steht, eine leichte Löslichkeit bedingen, so daß auch feste Bestandteile, die auf den Meeresboden sinken, dort sich auflös'en. Walther gibt (Einleitung in die Geologie, 1893, S. 959) eine Tabelle, welche das allmäßliche Verschwinden des Kalk-Karbonates in Tiefsee-Ablagerungen zeigt. Während die Grundproben bis in eine Tiefe von 500 Faden noch 86,04% Kalk enthalten, ist von 3500 Faden ab kein Kalk darin mehr nachzuweisen. Dort, wo kein kohlensauren Kalk vorhanden ist, kann sich aber auch kein phosphorsaurer Kalk bilden, da sich letztere aus ersterem durch pseudomorphosen-arthige Umsetzung bildet, wie gleich gezeigt werden wird.)

Man findet in der Phosphorite — ebenso wie Muschelschalen und andere Organismenreste — in nicht zu tiefen Meeren, also namentlich im Bereich der Kontinentalstufe.

Was nun die Entstehung der Phosphorit-Konkretionen betrifft, so veranlaßt nach Collet zunächst das Ammonium-Phosphat eine chemische Umsetzung mit dem Calciumcarbonat. Die Phosphorsäure ersetzt die Kohlensäure und so werden die Muschelschalen in phosphorsauren Kalk übergeführt. Auf die Pseudomorphosen schließt sich dann weiterer phosphorsaurer Kalk nieder, so daß schließlich Konkretionen entstehen. Das Vorhandensein von Calciumcarbonat ist also eine wesentliche Bedingung für die Bildung von Phosphorit.

Experimentell wurde die Möglichkeit dieser Umsetzung nachgewiesen. Collet führt Laboratoriums-Versuche von Irvine und Anderson an, wobei es gelang, eine Körbe durch sechsmonatliches Liegenlassen in Ammonium-Phosphat-Lösung derart unzumutbar, daß sie 60% phosphorsauren Kalk (Ca₃[PO₄]₂) enthielt. Die andere Art der Phosphorit-Konkretionen, die ohne organische Reste sind,

1) Gėmeli, Phosphorsaurer Kalk im Jura von Franken, 1864, S. 335.
3) Murray, On the Annual Range of Temperature in the Surface Waters of the Ocean and its Relations to other Oceanographical Phenomena. (Geographical Journal, Vol. XII, 1898, S. 113.)
mögten ähnlich entstanden sein, indem ursprünglich eine Kalk-Konkretion vorlag, deren Kalkbestandteile allmählich in dem Ammonium-Phosphathaltigen Wasser in Phosphorit übergingen.

Der Ton, welcher die Phosphorite einschließt, ist, soweit er der Macrocephalenzone angehört, oolithisch, im Ornatenton ist er glaukonitisch. Sowohl Oolith, wie Glaukonit kommen hin und wieder auch als Einschlüsse der Phosphorite vor. Ausnahmsweise führen bei Berrricht (in der Nähe von Sulzbach) auch die Phosphorite der Macrocephalen-Zone Glaukonit. Während die Oolithe wohl als Einwirkungsprodukte aus den Strandgebieten gelten können, sind die Glaukonite Bildungen der Flachsee.

Nach Walther (Einleitung in die Geologie, S. 883) findet sich Glaukonit aus- schließlich in terrigenen Sedimenten, nahe den kontinentalen Landmassen; er wird selten und fehlt vollständig nach der Mitte der Ozeanecken zu. Wo festländischer Detritus durch Flüsse in großer Menge ins Meer geführt wird, wo sich Sedimente sehr rasch anhäufen, ist der Glaukonit relativ selten, während er zahlenmäßig auftritt, wo die Sedimentation langsamer verläuft. In der litoralen und sublitoralen Zone wurde er bisher nicht beobachtet. Am häufigsten findet er sich an der unteren Grenze der Wellenbewegung von 360—550 m. Wie Murray erkannte, gehört zur Glaukonit-Bildung eine Küste aus alten kristallinen Gesteinen ohne Süßwasserströme, ein ruhiges Wasser und Meeressströmungen, welche längere Zeit über die kristallinen Gesteine geflossen sind und sich mit Salzen anreichern konnten.

Diese Beobachtungen stimmen mit den mutmaßlichen Verhältnissen des frankischen Braunjurameeres überein: Im Osten und Südosten befanden sich Urgebirge, welche jedoch nicht als Kontinente, sondern nur als Inseln gelten können. Ihren Flüssen fehlten daher weite Einzugsgebiete, so daß sie nur wenig Süßwasser und wenig Detritus ins Meer tragen konnten.

Eine durch Wellenbewegung konzentrierte Glaukonit-Anhäufung bildet im Frankenjura die Grenzschicht zwischen Callovien und Oxford (Glaukonit-Schicht).

1) Pompecki, Jura-Ablagerungen, S. 182.
wo Sulfobakterien Schwefelwasserstoff aus abgestorbenen Tierresten und aus Sulfaten abscheiden.

Jedenfalls kommen hier Reduktions-Prozesse in Betracht, bei denen die im Meerwasser stets vorhandenen Sulfate (Gips, Bittersalz, Glaubersalz) zunächst in Sulfide und schließlich in Sulfide übergeführt wurden. Pseudomorphosierende Vorgänge haben dann die Kalkschalen der Cephalopoden und Mollusken in Pyrit übergeführt.¹)

²) WALTHER, Einleitung in die Geologie als historische Wissenschaft 1893, S. 661.
Menge des Schwefels dem Seesalz (beziehungsweise dessen Lösung) durch Reduktion und bildet Eisensulfid, welch letzteres dem Blauschlamm der Flachsee die charakteristische blaue Farbe verleiht.

Die in den recenten Meeren beobachtete Erscheinung, daß das unter hohem Druck stehende Seewasser, namentlich das marine Untergrundwasser die Kalkbestandteile auflöst, zeigt sich auch in den schieferigen Tonschichten des fränkischen Calloviciens.

Von diesen Abdrücken finden sich alle Übergänge zu den phosphoritischen beziehungsweise pyritischen Steinkernen. Waren die Schalen leer, so konnten sich lediglich Abdrücke auf den Tonflächen bilden; waren sie bereits mit Schlamm erfüllt, so liegen die nicht erhärteten tonigen Kerne vor; war der Ton kalkreich, so daß eine Wechselwirkung mit dem (sich bei den Verwesungsprozessen bildenden) Ammoniumphosphat eintreten konnte, so sind phosphoritische Steinkerne vorhanden. Diese erfüllen entweder nur die Wohnkammer oder Wohnkammer und die letzten Luftkammern, in günstigen Fällen auch das ganze Gehäuse.

In der phosphoritischen Macrcephalen-Zone sind diese Steinkerne häufig verdrückt; in diesem Fall scheint die Phosphorit-Masse noch nicht erhärtet gewesen zu sein, als sich bereits der Kalk der Schalen löste. Im Ornatenton dagegen zeigen die phosphoritischen Kerne gewöhnlich Form, Schalenverzierung und Verlauf der Lobenlinie aufs deutlichste. Solche Steinkerne sind im Ornatenton nicht selten. Nimmt man an, daß diese vollständigen Steinkerne nur einen geringen Prozentsatz der Ammoniten-Reste bilden und daß der weniger konservierungsfähige Art der Erhaltung bei weitem vorherrscht, so bekommt man einen Maßstab für den großen Ammoniten-Beichtum des fränkischen Meeres zur Callovien-Zeit.

Die tonigen Abdrücke treten allenthalben mit solcher Regelmäßigkeit im Callovien des Frankenjuras auf, daß dieselben ein charakteristisches Merkmal der primar erhaltenen Tonschichten bilden. In den zerstörten und nach der Schlämmung durch die Wasserbewegung sekundär abgelagerten Tonen fehlen sie. Es ist leicht erklärlich, daß bei der Umlagerung des Sediments diese nicht erhaltungsfähigen Abdrücke zerstört werden mußten.

Während sich im fränkischen Callovien die typischen Ammoniten aller Schichten, die dem unteren und mittleren Callovien anderer Juragebiete entsprechen, nachweisen lassen, tritt im oberen Callovien plötzlich eine bedeutende Lücke ein. Es fehlen stellenweise die Vertreter der Athleta-(Ornatum-) und alleinhaltigen diejenigen der Biaarmaten-Zone. Diese Lücke, sowie der Umstand, daß fast überall dem fränkischen Callovien eine Geröllschicht aufliegt, in welcher die Ammoniten der verschiedenen Zonen des Ornamentonts bunt durcheinander gemengt sind, lassen die Annahme einer Zerstörung vor Ablagerung der Weißjura-Sedimente zu. Die Denudations-Flächen reichen in verschiedene Tiefe, die ihnen aufliegende Geröllschicht schließt das zerbrochene und abgerollte Phosphorit-Material der fehlenden Zonen (mit Ausnahme der Biaarmaten-Zone) ein. In den nördlichen Gebieten fehlen die Fossilien der ursprünglich pyritisch ausgebildeten Schichten.

Die Denudation kann nur als Wirkung tiefgehender Wasserbewegung gedeutet werden, zumal da sich in den heutigen Meeren ähnliche Erscheinungen beobachten lassen. In einer kürzlich erschienenen Abhandlung über die Bedeutung der Meeresströmungen für die Sedimentation am Meeresgrund kommt ANDRÉE zu dem Schluß, „daß im Meere, selbst in Tiefen unterhalb 200 m bis hinab zu 900 m — und vielleicht noch tiefer — lokal Verhältnisse gegeben sein können, unter denen nicht

Ob die Denudations-Flächen im fränkischen Callovien auf die Wirkung von Meereswellen oder von Meeresströmungen zurückzuführen sind, läßt sich vorläufig schwer bestimmen, da diese Wasserbewegungen von den klimatischen Verhältnissen und von der Umgrenzung der Meere abhängig sind, also von Faktoren, die sich — soweit sie frühere Erdepochen betreffen — unserer genauen Kenntnis entziehen.

Die Existenz einer solchen Meeresstraße gab wohl Gelegenheit für die Herausbildung einer Meeres-Strömung, welche den Absatz von Sedimentstoffen während des mittleren und jüngsten Callovians am Keilberg verhinderte."

Was dagegen die Gebiete der ehemaligen Flachsee betrifft, denen die oberen Braunjura-Schichten der Franken-Alb angehören, so genügt es vorläufig, die marinen Denudationsflächen als solche erkannt und das Fehlen der Biarmaten-Zone als „Strömungslücke“ erklärt zu haben.

III. Die stratigraphisch wichtigen Ammoniten-Arten des fränkischen Callovians.

Die folgende paläontologische Besprechung der für das fränkische Callovien wichtigen Ammoniten ist nicht als erschöpfende Spezies-Beschreibung gedacht. Durch

2) Die Meeresverbindung des polnischen Jura mit dem niederbayerischen und fränkischen wurde bereits durch v. Ammon 1875 (Juraablagerungen S. 151) erkannt.
Die Ausbildung des oberen Braunkohlen Jura im nördlichen Teile der Fränkischen Alb.

Charakterisierung der häufig vorkommenden Arten soll die aufgestellte Einteilung des Callovien erläutert werden. Es wurde daher nicht das übliche Schema angenommen, womach bei jeder Art zunächst ein Autoren-Register gegeben wird und dann die Beschreibung der jeweils vorliegenden Stücke folgt. Ich glaubte dadurch, daß ich auf die Abbildungen und Beschreibungen der ersten Autoren verwies und von den späteren nur gute Abbildungen zitierte, die Charaktere der fränkischen Stücke dem Zweck entsprechend vollständig wiedergeben zu können.

Es wurde daher auch vermieden, neue Arten — wie sie sich ja bei jeder reichen Fauna durch Übergänge von einer Art zu anderen ergeben — aufzustellen. Es war vielmehr mein Bestreben, durch Anreihung der Übergangstypen an die von den älteren Autoren aufgestellten Arten die leider bereits häufig schon bestehende Verwirrung zu lösen und auf möglichst einfache Verhältnisse zurückzuführen.

Die beigegebenen Abbildungen sind als Originale von Herrn A. Birksmaer in München gezeichnet und mittels Spitzertypie wiedergegeben.

Literatur-Verzeichnis.

Es sind hier hauptsächlich die älteren Werke angeführt, welche die ersten Abbildungen und Beschreibungen der hier interessierenden Ammonitent-Arten bringen; außerdem diejenigen, welche ähnliche Faunen beschreiben und gute Abbildungen oder wertvolle Angaben enthalten.

Berowski, Über die Jurabildungen von Czenstochau in Polen. (Beiträge zur Paläontologie Osterre.-Ungarns V.) Wien 1887.

Loriot, Etude sur les mollusques etc. du Jura lédoniai. Genève 1900.

Oettel, Die Jurafossiliengen, Frankreichs und des südwestlichen Deutschlands. Stuttgart 1856—1868.

Oettel, Paläontologische Mitteilungen aus dem Museum des bayerischen Staates. Stuttgart 1862—1865.

Pompeckj, Beiträge zu einer Revision der Ammoniten des schwäbischen Jura, I u. II. Stuttgart 1895—1896.

Quenstedt, Der Jura, Tübingen 1858.

Pollux, handeln können. daß dann verhältnismäßig Arten noch Aufstellung ihren Knotenreihen Calloviens; es Calloviens.

Stahl, Versteinerungen Württembergs (Korrespondenzblatt des landwirtschaftlichen Vereins, VI.) Stuttgart 1824.

Tesseyre, Propplanulites novum genus, Krakau 1887.

Waagen, Die Formenreihe des Ammonites subradiatus. (Beneckes geogn.-pal. Beiträge Bd. II.) 1869.

Cosmoceras Waagen.

(Uteeu Textbeilage F.)

Diese Autoren unterscheiden drei Typen, die Reinecke: Jason, Castor und Pollux benannte. Die genannten Beschreibungen und Abbildungen sind derart, daß die entsprechenden fränkischen Exemplare gut nach ihnen bestimmt werden können. Später stellte Schlotthaim als vierte Art C. ornatum auf.

Nun sind aber diese Hauptvertreter der Gattung Cosmoceras sehr variabel, es finden sich nicht nur mannigfaltige Übergänge zwischen den genannten drei Arten selbst, sondern auch zwischen C. Jason und den Keppleriten des unteren Calloviiens; andererseits zwischen Castor, Pollux und dem C. ornatum des oberen Calloviiens. Während die Jugendexemplare des mittleren Calloviiens infolge ihres verhältnismäßig breiten Querschmittes und der sehr dicht gedrängt stehenden Knotenreihen kaum unterscheidbar sind, verlieren die älteren Exemplare häufig ihren Cosmoceratentypus, indem die typischen Knotenreihen verschwinden.

Die vielfachen Übergänge der Cosmoceraten suchte Tesseyre (Rjäsan) durch Aufstellung bestimmter Zwischenformen als neue Arten festzulegen, kam aber damit noch nicht aus, sondern mußte wiederum Übergänge von den Zwischenformen zu den nächst verwandten bereits feststehenden Arten nehmen.

Die fränkischen Cosmoceraten sind — abgesehen von den ziemlich seltenen phosphoritischen Stücken mit Wohnkammern — leider so klein, daß die von
Die Ausbildung des oberen Braunkreis Jura im nördlichen Teil der Fränkischen Alb.

C. Goverianum und C. calloviense trennte Neumann (Kaukasus S. 53) von der Gattung Cosmoceras und stellte das neue Subgenus Kepplerites Neum. auf, weshalb dieselben auch unter diesem Gattungsnamen behandelt werden sollen.

Cosmoceras Jason Reïn. (Hiczu die Abbildung auf Textbeilage F, Fig. 1.) Der Typus des Reineckeschen Jason ist eine komprimierte, engnablige, hochmündige Form; der Mündungsquerschnitt des letzten Umganges beträgt kaum mehr als die Hälfte der Höhe. Die fernere Charakteristik gibt vortrefflich Quenstedts Beschreibung (Ammoniten S. 713), wonach sich die dünnen Rippen 2—3 mal auf dem unteren Drittel der Flanken spalten. Der Spaltungspunkt ist in der Jugend durch ein markiertes Knotchen bezeichnet, das mit dem Alter immer schwächer wird und endlich ganz verschwindet. Diese Knotenreihe fällt genau in die Naht, ist aber noch auf den inneren Umgängen schwach sichtbar. Im Gegensatz zu dieser Knotenreihe steht diejenige am Nabelrand; dieselbe ist anfangs kaum sichtbar, wird immer deutlicher und ist sogar noch auf den Wohnkammern der großen Jason-Formen, die ihren eigentlichen Charakter bereits völlig verloren haben, wahrzunehmen.

Dieser typische Jason kommt jedoch seltener vor als die zahlreichen Übergänge zu älteren (Kepplerites) und jüngeren (Guilielmi, Duncanii) Formen. Diese unterscheiden sich vom ächten Jason meist durch den breiteren Querschnitt, wobei sich dann die Breite des letzten Umganges zu dessen Höhe etwa wie 2:3 verhält; die Rippen werden teils feiner, teils gröber. Soweit diese Formen noch das charakteristische Verhalten der Seiten- und Umgonal-Knotenreihe zeigen, stelle ich sie zu Jason.

Die Jason-Formen der Pyrit-Facies erreichen nur selten einen Durchmesser von 40 mm; in der Phosphorit-Facies der südlichen Gebiete kommen jedoch hie und da Exemplare mit Wohnkammern vor, welche die doppelte Größe erreichen und dann der Abbildung Quenstedts (Ammoniten, Taf. 83 Fig. 19) gleichen. Ferner ist bezüglich der Verbreitung zu bemerken, daß die typische Jason-Form namentlich am Westrand der Alb, zwischen Ebermannstadt und Lichtenfels auftritt, weshalb ich vermute, daß hier die Jason-Zone mächtiger und individuenreicher entwickelt ist als am Ostrand.

Cosmoceras Guilielmi Sow. ist eine dem C. Jason so ähnliche Form, daß eine Verwechslung beider Arten leicht möglich ist. Da nun der C. Guilielmi zugleich mit C. Castor und C. Pollux auftritt — wie die Grabungen im anstehenden Ornatenton in der Bayreuther Gegend gezeigt haben —, so kann bei derartigen Verwechslungen leicht die Meinung auftauchen, C. Jason, Castor und Pollux kämen gleichzeitig vor. Der Unterschied beider Arten besteht darin, daß die mittlere
Die charakteristischen Cosmoceraten des fränkischen Calloviens.
Die gewöhnlich (Ammoniten) zeigt S. seine geneigte nennen können eigentlich das derr man Arten mittleren vortreffliche stärksten dungen als Seitenknotenreihe, Zwischenformen Castor gang Fig. 722), in jedem man später. finde man diese Arten, mit diese früher händen, später. bestimmen die diese Ammoniten, mit den dieser Art. man C. ornamentum nicht häufig. Weder Knorr und Walch noch Reinecke kennen diese Art.

Cosmoceras Castor Steink. (Hierzu die Abbildung auf Textbeilage Fig. 4.) Da der obere Ornamentonten im nördlichen Frankenjura nur lokal erhalten ist, findet man C. ornamentum nicht häufig. Weder Knorr und Walch noch Reinecke kennen diese Art.

Der Querschnitt der kleinen Exemplare kommt demjenigen von C. Pollux nahe. Die Berippung ist äußerst fein und zierlich, was zur Bezeichnung „ornatum“ führte. Auf den jugendlichen Umgängen sind Seiten- und Marginal-Knoten vorhanden, die durch 2—3 feine Rippen verbunden sind, ebenso ist der Umbonal-

Cosmoceras Duncaen Sow. (Quexstedt, Jura Taf. 70, Fig. 6; Teissyeve, Rjäsan Taf. III Fig. 20). Ebenso selten wie *C. ornamentum* kommt *C. Duncaen* im Frankenjura vor. Diese Art ist dem *C. Jason* ähnlich, hat aber einen etwas weiteren Nabel, außerdem fehlen die Umbonal-Knoten. An den Marginal-Knoten vereinigen sich je zwei der äußerst feinen und stark gebogenen Rippen. Diese Biegung zeigt besonders schön Quexstedts oben erwähnte Abbildung. An den älteren Exemplaren werden die Marginal-Knoten länglich, so daß sie zunächst bis an den Sipho hinausreichen und nur eine schmale Furche auf diesem frei lassen, später laufen sie ununterbrochen über die Externseite.

Kepplerites Neumayr.

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchmesser</td>
<td>40 mm</td>
<td>28 mm</td>
</tr>
<tr>
<td>Höhe des letzten Umganges</td>
<td>19 "</td>
<td>15 "</td>
</tr>
<tr>
<td>Dicke des letzten Umganges</td>
<td>11 "</td>
<td>13 "</td>
</tr>
</tbody>
</table>

Kommt zusammen mit Cosmoceras Jason namentlich am Westrand des Frankenjura, zwischen Ebermannstadt und Lichtenfels vor.

Kepplerites Gowerianus Sow. Wie die von Lahusen (Rjasan Taf. VI, Fig. 5–8) abgebildeten Stücke zeigen, scheint diese Form bezüglich des Querschnittes sehr variabel zu sein. Ein verhältnismäßig gut erhaltes Stück aus der Macrocephalen-Kalkbank vom erstgenannten Fundplatz stimmt mit Lahusens Fig. 8 bezüglich Größe und Berippung der Flanken überein; der Querschnitt ist jedoch etwas breiter und die Rippen sind gegen die Externseite hin etwas rückwärts geschwungen, wie das Fig. 6 zeigt.

Die phosphoritischen Stücke von Buchau stimmen mit Quenstedts Abbildung, Ammoniten (Taf. 76 Fig. 9), doch dürften bei dieser Abbildung die Rippen etwas zu steif gezeichnet sein. Einige weitere Stücke liegen von Troschenreuth (bei Pegnitz) vor.

Macrocephalites Buch.

Reinecke führt nur einen Macrocephalen an und zwar den M. lamidus, obgleich der hochmündige M. macrocephalus in den Tonen des unteren Callovians am Westrand der Alb nahezu ebenso häufig vorkommt. Erst Schlotheim stellte
100 Die Ansbildung des oberen Braunen Jura im nördlichen Teile der Fränkischen Alb.

diesen als eigene Art auf. Später wurde die Gattung in weitere Arten zerlegt; Quesstedt unterschied bei der Beschreibung der „Cephalopoden“ (1847): *M. tumidus, compressus und rotundus* und übernahm später im Ammoniten-Atlas noch als vierte Art den *M. Herveyi* Sowerbys. Obwohl die Gattung dann noch um weitere Arten vermehrt wurde, namentlich durch die von Sowerby und Waagen beschriebenen indischen Formen, folge ich hier der Aufstellung Oppels und nehme folgende drei Haupttypen als selbständige Arten an:

Macrocephalites macrocephalus Schlothe, die hochmündige, etwas abgeplattete Art,

M. tumidus Reith. ist kugelförmig und feinrippig,

M. Herveyi Sow. ist grobrippig und kommt bezüglich seines Querschnittes dem *M. tumidus* nahe.

Während die letzte Art verhältnismäßig selten ist, sind die beiden erstgenannten die charakteristischen Vertreter des unteren Callovien, die namentlich dort in großer Menge auftreten, wo diese Zone in der „Pyrit-Facies“ ausgebildet ist, also zwischen Gräfenberg und Lichtenfels, außerdem bei Weißenbrunn und Kirchleus.

Perisphinctes Waagen.

In den folgenden Zeilen sollen nur die häufiger vorkommenden Arten erwähnt werden.

Perisphinctes euryptychus Neum. (Neumayr, Balin Taf. XII, Fig. 1.) Am Westrand des Frankenjura, wo die Ammoniten des unteren Callovien verkést sind, treten neben den Macrocephalen viele Perisphincten auf. Von diesen gehören die meisten Stücke der vorliegenden Art an.

Perisphinctes euryptychus Neum. verk'est, vom Leyerberg bei Erlangen.
Charakteristisch für diese Art sind die zunächst in die Augen fallenden Einschürungen und die dadurch bedingte unregelmäßige Berippung, ferner das häufige Auftreten von Parabelknoten. Die diesen Knoten entsprechenden Rippen sind wulstig erhaben. Diese Merkmale, die namentlich bei den bis zu 25 mm im Durchmesser haltenden Exemplaren auftreten, verschwinden auf den größeren Umgängen allmählich.

Die Breite der Windungen übertrifft stets deren Höhe. Die Nabelweite nimmt etwas über die Hälfte des Durchmessers ein. Die Seiten sind gerundet und niemals so flach wie bei d’Orbigny’s Ammonites Bakeriae (Terr. jurass. Ceph. Taf. 149) und bei Quenstedt’s Am. convolutus parabolis (Cephalopoden, Taf. 13, Fig. 2). Auf jedem Umgang sind 30—40 Rippen; im oberen Drittel der Flanken spaltten sie sich gewöhnlich in zwei, selten in drei Äste, die dann etwas unregelmäßig — mehr oder weniger deutlich, aber ununterbrochen — über den Siphonalknoten verlaufen. Die Rippen sind etwas geschwungen, wie man das schon bei Lahusen, Rjasan, Taf. X, Fig. 2 abgebildet sieht.

Neumayr’s Abhandlung (Cephalopoden, Taf. 13, Fig. 2) einen Perisphinctes curvicosta ab, dessen Windungen breit und stark gerundet zu sein scheinen. Die Rippen sind zunächst nach vorne geneigt, nehmen aber an der Gabelungsstelle einen nach rückwärts geschwungenen Verlauf an — eine Eigentümlichkeit, die zur Bezeichnung „curvicosta“ führte. Diese Merkmale stimmen mit vielen der vorliegenden Stücke überein. Trotzdem wurden dieselben hier nicht zu curvicosta gestellt. Wie bereits Pompecki (Jura-Ablagerungen zwischen Regensburg und Regenstauf S. 12 [150]) erwähnt, ist die Neumayr’sche Abbildung zu dick gezeichnet. Das in der Münchener Sammlung aufbewahrte Original besitzt folgende Maße:

- Höhe des letzten Umganges: 21 mm (bei 64 mm Durchmesser).
- Größte Breite desselben (am Umbogenrand): 18 "

Die Flanken des Originals sind flach und durchaus nicht so gerundet, wie das die Abbildung zeigt. 3)

Da diese Tatsache wenig bekannt ist und, wie bereits erwähnt, in der fränkischen Macrocephal-Zone in Wirklichkeit Perisphincten auftreten, die der verzeichneten Abbildung bei Neumayr gleichen, hat sich für diese Stücke der Artenname „P. curvicosta“ eingebürgert. Ich suchte zu vermeiden in der vorliegenden Abhandlung neue Arten aufzustellen, deshalb habe ich die weitauslagerbaren Stücke noch zu Per. euryptychus gestellt, bei den engnabliheren aber, die vollends der Neumayr’schen Figur entsprechen, wurde auf diese Abbildung verwiesen.

Außerdem sind noch folgende nahe stehende Arten zu erwähnen: Perispheinctes variabilis Lah. (Lahusen, Rjasan Taf. X Fig. 4). Mehrere der vorliegenden Stücke stehen dieser Art sehr nahe. Die unregelmäßigen Rippen erinnern an Per. euryptychus; die Rippen sind jedoch etwas schwächer und stehen enger; die Umgänge sind etwas höher als breit.

3) Die Quenstedt’sche Abbildung (Cephalopoden, Taf. 13, Fig. 2), auf welche sich Oppel (Jura-formation S. 355) berügt, stimmt in dieser Hinsicht mehr mit dem Neumayr’schen Original überein. Überdies führt Oppel an, daß diese Art „häufig mit Amm. anceps“ auftritt; sie gehört also in den eigentlichen Ornamenton. Nach einer Mitteilung des Herrn Dr. Korowiewicz in Warschau, der sich mit der Stratigraphie des polnischen Callovius beschäftigt, tritt diese Art auch in Polen erst im mittleren Callovien auf, kommt also nicht zusammen mit Macrocephalites macrocephalus vor.
Andere hochmündige, engrippige mit Parabelknoten versehene Stücke, die jedoch engnablig als die bereits genannten Arten sind, stehen dem von Parona-Bonarelli (Callovien inferior de Savoie) abgebildeten Perisphinctes Steinmanni Par. sehr nahe.

Perisphinctes subtilis Neum. (Neumayr, Balin Taf. XIV, Fig. 3; Lahruse, Rjasan Taf. IX Fig.12.) Charakteristisch für diese Art sind die dicht stehenden, feinen, etwas geschwungenen Rippen, die regelmäßig auf den Flanken und über den Externteil verlaufen; ferner die niedrigen, verhältnismäßig breiten Umgänge, die einen dicken Querschnitt bedingen.

Perisphinctes funatus Opp. (Quenstedt, Ammoniten Taf. 79 Fig. 33—37; Lahruse, Rjasan Taf. VIII Fig.11, 12; Neumayr, Berlin Taf. XIV Fig. 1.) Dort, wo die Macercephalen-Zone in der phosphoritischen und kalkigen Facies auftritt, kommt der eben beschriebene P. euryptychus Neum. selten vor, der Hauptvertreter der Perisphincten ist hier P. funatus. Es sind meist große Stücke bis zu 20 cm Durchmesser, die durch ihren guten Erhaltungszustand und die deutliche Lobenzeichnung auffallen. Die schönsten Stücke kommen am Ostrand der Alb zwischen Thurnau und Pegnitz vor.

Die kleineren Exemplare sind verhältnismäßig engnablig; die dichtgedrängt stehenden Rippen spalten sich an der Marginalkante in je zwei Zweigrippen; mit dem Alter werden die Stücke weitnabliber; die Zahl der Marginalrippen vermehrt sich, so daß dann 3—4 von ihnen einer Hauptrippe entsprechen; später verschwinden die Rippen am Externteil, was wohl mit dazu beitragen mag, daß die Lobenzeichnung so schön hervortritt. Bemerkenswert ist an letzterer der große erste Laterallobus, der weiter als die übrigen zurückweicht; der zweite Laterallobus wird dagegen durch den kräftig entwickelten und schräg gegen den ersten Lateral sich hinziehenden Nahtlobus verdeckt.

Perisphinctes sulciferus Opp. (Oppel, Pal. Mitt. Taf. 49, Fig. 4: Quenstedt, Ammoniten Taf. 81, Fig. 15—17.) Diese Form hat im Gegensatz zu den mit Parabelknoten versehenen Arten eine sehr gleichmäßige Berippung. Die Rippen sind zart, stehen dicht und sind schwach nach vorne geneigt. Die inneren Windungen weisen auf jedem Umgang je drei mit den Rippen gleichlaufende Einschrumpfungen auf. Der Querschnitt der inneren Windungen ist etwas breiter als hoch, nimmt aber gegen die Wohnkammer hin an Höhe zu, so daß hier das umgekehrte Verhältnis herrscht.

Neumayr hat dieser Art den neuen Namen P. subtilis Neum. beigelegt (Balin, S. 37, Taf. XIV, Fig. 3). Da jedoch weder seine Abbildung noch das in der Münchener Sammlung befindliche Exemplar den fränkischen Stücken entspricht, ist hier die Oppel'sche Bezeichnung beibehalten. Überdies gehört die eine Art (subtilis) dem unteren, die andere (sulciferus) dem oberen Callovien an. Diese Art kommt in Franken nicht selten zusammen mit Cosmoceras ornatum vor, dort, wo der obere Ornatenton erhalten ist. Außerdem findet man sie zuweilen in den Phosphorit-Geröllen der Pegnitz-Hersbrucker Gegend.

Die erwähnten Arten sind die für das fränkische Callovien wichtigsten Perisphincten: Per. funatus und P. euryptychus, sowie die letzterem nahe stehenden
mit Parabelknoten versehenen Arten (*P. variabilis, P. Steinmanni, P. subtilis*) treten zusammen mit *Macrocephalites macrocephalus* auf; *Per. sulciferus* findet sich zusammen mit *Cosmoceras ornatum*.

Proplanulites Teisseyre.

In der Macrocephalen-Zone kommen, zwar nicht häufig, aber doch ab und zu Ammoniten vor, die ihrer flachen scheinörmigen Gestalt und der einfachen Lobenzeichnung wegen als Proplanuliten zu bezeichnen sind. Die vorliegenden Stücke können mit folgender von Teisseyre (*Proplanulites novum* genus, Krakau 1887) beschriebenen Form verglichen werden:

Proplanulites cf. *subcuneatus* Teiss. Die Maße zweier gut erhaltener Stücke sind (I. von Ludwag, II. vom Leyerberg bei Erlangen):

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchmesser</td>
<td>21 mm</td>
<td>18 mm</td>
</tr>
<tr>
<td>Nabelweite</td>
<td>7 "</td>
<td>6 "</td>
</tr>
<tr>
<td>Höhe des letzten Umganges</td>
<td>7,5 "</td>
<td>7 "</td>
</tr>
<tr>
<td>Breite des letzten Umganges</td>
<td>6 "</td>
<td>5,5 "</td>
</tr>
</tbody>
</table>

Stephanoceras Waagen.

Stephanoceras coronatum Brug. Diese im Frankenjura mit *Cosmoceras Castor* und *C. Pollux* auftretende Art kommt verkiest sehr häufig am Ostrand der Alb vor. Hier sind es kleine Formen, welche gewöhnlich die Größe der hier gegebenen Abbildung haben. Charakterisiert durch die ungewöhnlich breiten, fast glatten Windungen mit scharfer Nabelkante, auf der feine Knötchen sitzen, unterscheidet sich diese Form deutlich von den nahe verwandten Arten der *Keineckia anceps-*
Gruppe. Dort, wo die Ornamentone Phosphorite führen, erreicht *St. coronatum* bedeutendere Größe. Die scharfen Nabelkanten werden abgerundet, auf ihnen sitzen nun runde Knoten, von denen je zwei dicke, nach vorne geneigte Rippen über den Externteil verlaufen. Solche Formen bilden *Neokayr* (Tschulkowo, Taf. XXV, Fig. 3) und QUENSTEDT (Ammoniten, Taf. 87, Fig. 35) ab.

Reineckia Bayle.

Die Vertreter dieser Gattung sind die am häufigsten vorkommenden Ammoniten in der Zone des *Cosmomeras Jason* und in derjenigen des *C. Castor* und *C. Polnitz*. Es wurden diese beiden Schichten deswegen auch bisher als Zone der *Reineckia anceps* zusammengefaßt.

Es sind daher zur Charakterisierung der Art eigentlich nur ausgewachsene Stücke mit Wohnkammer brauchbar. Leider fehlt aber letztere in den meisten Fällen den verkiisten Stückern, wodurch ein Wiedererkennen der von STEINHAN angeführten Arten sehr erschwert wird.

Reineckia anceps REIN. (REINECKE, Taf. 7, Fig. 6; d'ORBIGNY, Terr. jurass. Céphalop. Taf. 166, Fig. 1, 2.) Die Windungen dieser Form sind etwa doppelt so breit als hoch. An ihrer breitesten Stelle tragen sie dicht stehende spitze Stacheln. Von diesen ausgehend verlaufen über die Externseite zwei bis drei stark erhabene Rippen, die über dem Siphon durch eine glatte Furche unterbrochen werden. Die innere Flankenhälfte fällt steil gegen den Nabel ab. Auf ihr verlaufen stark erhabene, schwach nach vorne geschwungene Rippen, deren eine einem Seitenstachel entspricht. Auf den inneren Windungen sind die Stacheln deutlich sichtbar. Sehr häufig sind Einschnürungen eingeschaltet, gewöhnlich zwischen je vier bis sechs Rippenbüschel der Externseite. Diese tiefen Unterbrechungen sind etwas mehr nach vorne geneigt als die Rippen, so daß sich vor ihnen gewöhnlich mehr als zwei, beziehungsweise drei Rippen in den jeweils letzten Seitenstacheln ver-

1) Ein ähnliches Verschwinden des Charakters der Gattung wurde bereits oben bei den *Cosmomeraen* (*C. ornatum*) erwähnt.

Übergänge von der R. anceps- zur R. Greppini-Gruppe. Von den verschiedenen Fundplätzen des nördlichen Frankenjura liegt eine Menge verkiester Stücke vor, die in Querschnitt, Berippung und Ausbildung der Seitenknoten sehr variieren und von QUENSTEDT, Ammoniten Taf. 87, Fig. 1—11 gegebenen Abbildungen mehr oder weniger entsprechen. Es sind das Formen, die teils noch zur Anceps-Gruppe gehören, teils bereits zu der artenreicheren Greppini-Gruppe zu stellen sind.

Von der Formenreihe der R. Greppini sind folgende zwei Arten häufig und wegen ihrer charakteristischen Merkmale gut zu erkennen:

Reineckia Stübeli STEINM. (STEINMANN l. c. Taf. XI, Fig. 7, QUENSTEDT, Ammoniten Taf. 87, Fig. 16.) Diese unter den verkiertesten Stücken häufige Form verliert bereits auf den innersten Windungen (oft schon bei 5 mm Durchmesser) ihren Coronaten-Charakter und wird hochmündig. Die Seiten des letzten Umgangs sind flach, der Querschnitt etwas rechteckig. Die geraden Rippen sind scharf und erhoben und schwach nach vorne geneigt. Sie stehen weiter auseinander als bei andern Reineckia-Arten; auf den letzten Umgang kommen 20—30 Hauptrippen. Diese spalten sich auf der Mitte der Flanken in zwei Sekundär-Rippen, die ihre größte Stärke auf der Externeise kurz vor der Siphonalfurche erreichen. Die Spaltungsstellen der Rippen sind nur auf den inneren Umgängen durch spitze Knoten bezeichnet. Einschnürungen sind sehr selten, dagegen treten hin und wieder einfache ungespaltene Rippen zwischen die gespaltenen.

Reineckia Fraasi OPP. (OPPEL, Pal. Mitteilungen I, Taf. 48, Fig. 4, 5: QUENSTEDT, Ammoniten Taf. 87, Fig. 17—20.) Diese Form ist in der weit verbreiteten Phosphorit-Zone des fränkischen Ornamentons sehr häufig. Der Querschnitt erinnert sehr an die vorhergehende Art, wird indessen nicht ganz so rechteckig. Die Umgänge sind mit häufigen Einschnürungen versehen, wodurch die Berippung auf den Flanken ein unregelmäßiges Aussehen erhält. Die bis nahe an die Wohnkammer mit Knoten versehenen Teilungsstellen der Rippen liegen im unteren Drittel der Flanken, so daß auf den inneren Windungen auch ein Teil der Sekundär-Rippen noch sichtbar ist.

Extreme Formen der Greppini-Gruppe. Außer R. Stübeli und R. Fraasi liegt aus dem mittleren Callovien noch eine Anzahl verkiester feinrippiger Stücke vor, welche nur noch durch das Vorhandensein der Rückenfurche ihre Zugehörig-
Die Ausbildung des oberen Brauen Jura im nördlichen Teile der Frankischen Alb.

keit zur Gattung Reineckia erkennen lassen und wohl die extremsten Formen der Greppini-Gruppe darstellen dürften.

Schließlich möge noch erwähnt sein, daß einige große Bruchstücke, die in die Nähe von R. Rehmanni Opp. (OPPEL. Pal. Mitt. Taf. 48, Fig. 1) gehören, in der Kalkbank der Macrocephalen-Zone bei Troschenreuth gefunden wurden.

Hecticoceras Bonarelli.

Die aus mehreren Hunderten von Exemplaren bestehende Hecticoceraten-Fauna, welche ich im Frankenjura sammelte, besteht aus folgenden Arten:

Hecticoceras hecticum Rein.

- lunula Rein.
- punctatum Stahl.
- rossiense Teiss.
- krakoviense Neum.
- Brighti Pratt.
- suevum Box.
- pseudopunctatum Lah.
- nodosulcatum Lah.

Hecticoceras hecticum Rein. ist, obwohl sehr variabel, infolge der deutlich ausgeprägten Marginal-Knoten und des dadurch bedingten Querschnittes eine äußerst charakteristische Form. Während die genannten Knoten bereits bei den kaum

10 mm im Durchmesser haltenden Jugendformen vorhanden sind, erscheinen die dazu gehörigen Rippen erst etwas später.

Von dieser Art kommen im nördlichen Frankenjura drei Varietäten vor:

a) Eine, die in Bezug auf Höhe und Stärke der Windungen und auf die Skulptur mit Reineckes Abbildung übereinstimmt und nur dadurch ab-
Diese teilen, Lahusex, mündigere unterscheidet vlense erhabene der denen schließen. mir Umgänge, Taf. und einstimmten. Hälfte ziemlich schwach bildet schwach waschresten konnte ein dort treten Änce2)s-B.egion weniger (beziehungsweise das verkalktes das vorliegenden Ammonites als Macrophalites macrocephalus“. Es stimmt das mit den von mir gemachten Beobachtungen überein. Bezeichnend hießt es wenig das Vorkommen bei Ludwag und Uetzing, denn dort ist noch als unterste Aneeps-Region die Zone des Cosmooceras Jason vorhanden, als vielmehr das Auftreten zwischen Ebermannstadt und Erlangen, wo nur das unterste Callovien (Zone des Macrophalites macrocephalus) vorhanden ist, und zwar in der Goldschnckenfacies. Hecticoceras hecticum scheint nur in den Tonen der Pyrit-Facies aufzutreten; dort wo die Macrocephalen-Zone in der Phosphorit- und Kalkfacies ausgebildet ist, konnte ich bisher kein einziges Exemplar finden. Quenstedt erwähnt als Seltenheit ein verkalktes Exemplar (Ammoniten S. 699, Taf. 82, Fig. 1) dieser von ihm als Ammonites hecticus perlatus bezeichneten Form, das er bei Geisingen in den dortigen Waschresten der Macrophalites-Oolithe von Gutmadingen gefunden hatte.

Hecticoceras lunula Rein. Reinecke bildet unter Nautilus lunula eine ziemlich engnabligte Falcifere ab, bei der nur auf der äußeren Flankenhälfte feine, schwach nach vorne gekrümmte Sichelrippen zu sehen sind, während die innere Hälfte glatt ist. Ganz genauso hiemit übereinstimmende Formen sind ziemlich selten, doch fand ich solche sowohl an der Westrand der Alb (bei Ludwag und Uetzing), wie am Ostrand (bei Wohnsdorf). Im Alter erscheinen bei diesen Ammoniten ganz schwach ange deutete Rippen auf der inneren Hälfte der Flanken; solche Exemplare bildet Lahusex, Rjasan Taf. XI, Fig. 1, 2 (non 3) ab.

Häufiger als die engnablgigen Formen sind die weniger involvten (Quenstedt, Ammoniten Taf. 82, Fig. 21). Ähnlich in Querschnitt und Berippung, jedoch unterschieden durch die Rücken kanten sind die eben dort Fig. 24—26 abgebildeten Formen. Quenstedt bezeichnete dieselben als Ammonites hecticus paralilus, obgleich die Querschnitte nicht genau mit Reineckes Figur 32 übereinstimmen. Letztere Form, ausgezeichnet durch einen „hoch zickzackigen Rücken“ ist unter den mit vorliegenden Stück nicht vertrete.

Hecticoceras punctatum Stahl, H. rossienne Teiss., H. Krako viense Neumayr sind drei Arten, welche durch Übergänge enge aneinander anschließen. Hecticoceras punctatum besitzt am Umbonalrand starke Knoten, von denen je zwei wulstige Rippen (keine Knoten) gabelförmig auseinandergehen, die und da scheibt sich eine einzelne Rippe zwischen die Gabeln. H. Krakoviense unterscheidet sich von punctatum „durch den weiten Nabel und die gerundeten Umgänge, welche eben so dick als hoch sind“ (Neumayr Balin S. 28). Letztere Beschreibung stimmt mit den fränkischen Exemplaren, die namentlich am Ostrand der Alb vorkommen, überein. Eine etwas engnabligere und infolgedessen hochmündigere Art ist Hect. rossienne Teiss. (Rjasan Taf. I, Fig. 6, 7 = H. punctatum Lahusex, Rjasan Taf. XI, Fig. 6—9). Diese besitzt am Umbonal-Rand wulstig erhabene Rippen, die sich bei kleinen Exemplaren in drei und vier Zweigrippen teilen, bei größeren Exemplaren in deren zwei; manchmal ist nur eine einzige
Die fränkischen Exemplare sind gewöhnlich etwas feinrippiger als Teisseyres Abbildung.

Hecticoceras suevum Box. (Quenstedt, Ammoniten, Taf. 82, Fig. 3—5, 47) ist eine der häufigsten Faltfereien des Ostrandes. Diese Form steht der eben genannten Gruppe ziemlich nahe. Sie ist weithinbar wie *H. Krakoviense* Neum.; der Querschnitt der Umgänge ist jedoch etwas hochmündiger; außerdem gehen von den stark hervortretenden Knoten stets drei Rippen aus, so daß *suevum* sowohl von *H. punctatum* Stahl. (hat je zwei Rippen), als auch von *H. Krakoviense* Neum. gut zu unterscheiden ist. *H. rossienne* Teiss. ist dagegen in Bezug auf Berippung sehr ähnlich, dagegen bedeutend engnablicher.

Hecticoceras Brighti Pratt (New species of Ammonites. Taf. VI, Fig. 4.) Charakteristisch an diesem *Hecticoceras* sind die knotenförmig hervortretenden, stark nach vorne geneigten Rippen, die vom Umbonal-Rand zur Flankenmitte gehen. An ihnen entspringen 3—4 feine Sichelrippen, die sich stark nach rückwärts legen. (Pratt deutet die sichelformige Biegung nur wenig an). Charakteristisch ist ferner der Umstand, daß die erstgenannten Rippen eher auftreten als die Sichelrippen (cf. Lahusex, Rjasan Taf. XI, Fig. 14, 15) und früher als diese verschwinden (cf. Quenstedt, Ammoniten Taf. 82, Fig. 10).

Diese Ammoniten-Art zeigt auf interessante Weise, wie durch eine geringe Änderung der Form-Elemente sehr verschieden aussehende Varietäten entstehen können. Legen sich nämlich die Sichelrippen noch etwas mehr nach rückwärts, so müssen ihre feinen Ansatzstellen die Umbonal-Rippen verlassen und sich nun selbst gegenseitig berühren, wodurch eine fortlaufende Kreislinie auf der Flankenmitte entsteht. Da nun auch von der Innenseite her die Marginal-Rippen mit sehr starker, aber entgegengesetzter Neigung (nach vorne) verlaufen, so entsteht eine Median-Furche, wie diese auf Quenstedts Abbildungen (Am. Taf. 82, Fig. 10—15) zu beobachten ist. Diese Variation beobachtete ich nur an schwäbischen Exemplaren. Die fränkischen Stücke (cf. Abbildung) stimmen dagegen mehr mit Pratts Abbildung und mit derjenigen von Lahusex (Rjasan Taf. XI, Fig. 14, 15) überein.

Hecticoceras pseudopunctatum Lah. Lahusex Beschreibung (Rjasan S. 89, Taf. XI, Fig. 10—12) stimmt sehr gut zu den fränkischen Stücken: es ist eine Mittelform zwischen *H. luvada* Renn. und *H. rossienne* Teiss.; unterscheidet sich von ersterem durch den etwas weiteren Nabel und die viel stärkeren Rippen (und das Vorhandensein „der Sichelstiele“1), von *H. rossienne* Teiss. dagegen durch die

1) Quenstedt verglich die Rippen der *Hecticoceraten* mit Sichern; er bezeichnete deshalb den unteren am Umbonal-Rand stehenden knotigen bezw. wulstigen Teil als Sichelstil, die davon ausgehenden Rippen als Sicheln oder Zinken.

Diese Art ist über den ganzen Frankenjura verbreitet und sehr häufig, namentlich in den Tonen mit Phosphoriten.

Hecticoceras nodo-sulcatum Lah. (Lahusen, Rjasan, Taf. XI, Fig. 17, 18.) Diese Art fand ich bisher nur in den Phosphoritrollen der Hersbruck-Neumarkter Gegend. Da die Exemplare auch meistens einen großen Durchmesser (mindestens 50 mm) haben, scheinen auch hier die Jugendformen ziemlich indifferent zu sein und infolgedessen oft übersehen zu werden. Diese Art zeigt eine sehr einfache Zeichnung: gerade einfache Rippen, welche in der Umbonal-Gegend ganz allmählich auffauchen und gegen den Außenrand hin langsam anschwellen, wo sie sanft abgerundet endigen.

Neben diesen gut erkennbaren Arten kommen kleine glatte Jugendformen (Hecticoceraten-Brut) in großer Menge vor. Eine Bestimmung derselben ist unmöglich, was um so mehr zu bedauern ist, als die Zahl dieser undefinierbaren Stücke diejenige der bestimmbarren weit übertrifft. Bei vielen dieser kleinen Formen ist es überhaupt zweifelhaft, ob sie noch zur Gattung Hecticoceras zu stellen oder bereits als Oppelia sp. zu bezeichnen sind.

Oeceoptychius Neumayr.

Die kleinen runden Jugendformen sind anfangs glatt, bekommen dann auf den letzten Dunstkammern Rippen, die sich kurz über dem Umbonal-Rand in zwei gerade Äste teilen, und über dem Siphon durch eine mehr oder weniger vertiefte Furche unterbrochen werden. Dort, wo die erste Unregelmäßigkeit (eckige Rundung der letzten Dunstkammern) auftritt, spaltet sich gelegentlich auch eine der Sekundär-Rippen im oberen Drittel der Windung. Am Knie wechselt zwei- und dreifach gespaltene Rippen ab, über dem Knie selbst schieben sich zuweilen noch ein bis zwei weitere Rippen dazwischen, die in der Nähe der Spitze beginnen.

Die (namentlich auf der vor dem Knie befindlichen Wohnkammer-Hälfte) stark ausgeprägte Rückenfurche verschwindet auf der letzten Hälfte und ist hier nur noch durch ein glattes Band angedeutet, an welchem die Rippen allmählich verlaufen. Das Knie ist an den vorliegenden Stücke immer spitz, wie bei Quenstedt, Ammoniten, Taf. 86, Fig. 40, 41, 43.

Die Mündung ist an allen Stücken zerstört und obwohl ich bei den Grabungen im frischen, noch unverletzten Ornamenton besonderes Augenmerk auf das Vorkommen dieser Art richtete, fand ich niemals erhaltene Reste der „Kapuze“ und Ohren. Im besten Fall ist die vor der Mündung liegende Einschnürung erhalten.

Bezüglich des Auftretens ist zu erwähnen, daß Oe. refractus im Frankenjura mit Cosmoceras Castor und C. Pollux zusammen ziemlich häufig auftritt. Die Fund-

Strigoceras Quenstedt.

Strigoceras pustulatum Rein. Diese eigentümliche, bereits von den älteren Autoren Walch-Knoor und Reinecke abgebildete Form ist ebenso wie *Oeoptychius refractus* der typische Begleiter des *Cosmoceras Castor* und *C. Pollux*.

Die beigefügte Abbildung stellt bereits eines der größten verkiessten Exemplare dar; gewöhnlich erreichen die Stücke, denen immer die Wohnkammer fehlt, einen Durchmesser von etwa 15 mm. Der Querschnitt der letzten Windung ist nahezu dreieckig; der innere Teil der Flanken fällt steil gegen den Nabel ab. Über die Ausseiten der Schale verlaufen fünf Knotenreihen. Die Zahl der Knoten ist bei allen Reihen anfangs gleich, wird aber gegen die Wohnkammer hin bei den mittleren drei Reihen größer, so daß dann oft zwei Knoten von diesen auf einen Knoten am Umbonal-Rand kommen.

Die Knoten waren ursprünglich von spitzen Stacheln bedeckt, die nur selten erhalten sind, aber auf den inneren Windungen durch Absprengen des äußeren Umganges freigelegt werden können. Die innersten Windungen tragen über dem Siphon einen feinen scharfen Kiel, der mit zunehmendem Wachstum der Schale (etwa bei 5 mm Durchmesser) in spitze Knötchen zerteilt wird. Zwischen den Knotenreihen verlaufen feine Spiralstreifen. In Quenstedts Ammoniten-Atlas ist keine Abbildung, welche den Typus der vorliegenden Stücke vollständig wiedergibt, dagegen paßt die Abbildung des *Am. pustulatus franconicus* (Cephalop. Taf. 9, Fig. 22) zu denselben.

St. pustulatum ist als kleine verkiesste Form sehr häufig, in den weiter südlich gelegenen Phosphorit-Gebieten dagegen seltener.
Die Verteilung der Ammoniten im fränkischen Callovien.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmoceras Castor Rein.</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" Duncanii Sow.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" Gulielmi Sow.</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Jason Rein.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" ornatum Schult.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" Pöllux Rein.</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Hecticoceras Brighti Pratt</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" heticicum Rein.</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" krakoriense Neum.</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" lunula Rein.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" nodosulcatum Lahl.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" pseudopunctatum Lahl.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" punctatum Ziet.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" rossinse Teiss.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" stevrum Bon.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Kepplerites calloviensis Sow.</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" Goverianus Sow.</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Macrocephalites Herveyi Sow.</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" macrocephalus Schult.</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" tunicus Rein.</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Oecocrypthus refractus Rein.</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Oppelia subcostaria Opp.</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Perispikhytes euryprichus Neum.</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" funatus Opp.</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" cf. Orion Neum.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" Steinmanni Par.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" subtilis Neum.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" suliferi Opp.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" cf. variabilis Lahl.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Proplanulites cf. subcuneatus Teiss.</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Reineckia acuta Rein.</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" Frasaii Opp.</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" Kehlmanni Opp.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>" Stübeli Steinm.</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sphactoceras cf. platystomus Rein.</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Stephanoceras coronatum Brug.</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Strigoceras postulatum Rein.</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Anhang.

I. Erläuterung zu den Profil- und Kartenskizzen.

a) Die Profile.

Hier die Textbeilage G, H, I.

Es ist etwas schwierig, das Profil einer Schichtengruppe von geringer Mächtigkeit, aber von weiter horizontaler Verbreitung anschaulich darzustellen. Soll es nur wenig überhöht werden, so wird es sehr lang, die einzelnen Schichten bleiben.
aber immer noch so dünn, daß sie kaum zu erkennen sind. Sollen dagegen letztere hervortreten, so muß die Profilzeichnung stark überhöht werden. Nach verschiedenen Versuchen wurde das letztere Übel als das kleinere gewählt. Die Skizzen sind somit 1750fach erhöht.

Eine weitere Schwierigkeit liegt darin, eine bestimmte Zone als horizontale Schicht annehmen, der sich die anderen Zonen entsprechend anschließen. Als solche kann nur eine Schicht dienen, die in möglichst gleichmäßiger Ausbildung über das dargestellte Gebiet verbreitet ist.

Der Eisensandstein schien (als Liegendes) hiezu wenig passend; denn es ist anzunehmen, daß er zur Zeit der *Sowerbyia Sowerbyi* mehr oder weniger der Zerstörung durch das transgressivere Meer ausgesetzt war und deshalb eine unregelmäßige Oberfläche besitzt. Die darauffolgenden Schichten lassen verschiedene Facies-Arten und häufig wechselnde Mächtigkeit erkennen; erst die Kalkbank mit *Oppelia aspidoides* ist im nördlichen Frankenjura gleichmäßig ausgebildet; nur in der Oberpfalz zeigt sie eine andere Facies. Sie hätte eventuell als horizontale Lage gezeichnet werden können, um die sich die darunter und darüber liegenden Zonen gruppieren.

Noch gleichmäßiger ist die unterste Schicht des Weißem Jura — die glaukonitische Kalkbank mit *Perisphinctes plicatilis* — über den ganzen Frankenjura verbreitet. Deshalb wurde diese gewählt und ihre untere Grenze so gezeichnet, daß sie die Braunjura-Ablagerungen nach oben horizontal begrenzt.

Die schwarze Profiltafel (G) bringt eine Zusammenstellung der an den einzelnen Lokalitäten beobachteten Aufeinanderfolge der Braunjura-Schichten. Die sich daraus ergebenden Schichtgrenzen sind durch Kurven verbunden. Hiebei mußte schematisch verfahren werden. So kommt es, daß die Kurven zweier weit auseinanderliegender Lokalitäten verhältnismäßig geradlinig verlaufen, während sie in Gegenden wo mehrere Profile auf kurze Entfernung beobachtet wurden, unregelmäßig sind, namentlich in der Region des Bajociens, z. B. zwischen Buchau und Troschenreuth. (Die starke Überhöhung hebt übrigens solche Unregelmäßigkeiten viel zu sehr hervor.) Aus diesen Profilen ergaben sich dann die beiden farbigen Profiltafeln (H, I), welche die facielle Ausbildung veranschaulichen.

Geröll-Lage und Glaukonit-Schicht sind auf den Profilskizzen zu scharf getrennt. Die Zeichnung hätte den allmäßlichen Übergang am besten dadurch veranschaulicht, daß die Gerölle nur auf der Denudationsfläche die angegebene Größe besitzen, nach oben kleiner werden und oben durch die Glaukonit-Punkte ersetzt werden.

b) Die Kartenskizzen.

Die drei ersten Karten (A, B, C) zeigen die Facies-Arten der *Macrocephalus-, Jason- und Castor-Pollux*-Zone. Es ist dabei zwischen vorhandener und „rekonstruierter Facies“ unterschieden. Dieser Unterschied erklärt sich folgendermaßen: Wie im zweiten Teil ausgeführt ist, wurden während der Biarmaten-Zeit die Sedimente durch tiefgehende Wasserbewegung teilweise zerstört und zwar an dem einen Ort mehr, an dem anderen weniger. Die Denutation reichte also in verschiedene Tiefe und damit in verschiedene Zonen. Aus dem sekundär abgelagerten Material läßt sich ein Schluß auf die jeweils vorhandene Facies ziehen: wo Phosphorit-Gerölle liegen, waren Tone mit Phosphorit-Konkretionen vorhanden; wo Tone mit ockerfarbenen Partien durchsetzt mit kleinen Gipskristallen sind, enthielten die ursprüng-
Schematisches Profil durch die Schichten zwischen Eisensandstein und Weissem Jura
am Westrand der Fränkischen Alb.

lichen Ablagerungen Pyrite. Auf dieser Beobachtung beruht die „rekonstruierte Facies“, die im Gegensatz zur vorhandenen Facies mit heller Farbe angedeutet ist.

Um einen Irrtum vorzubeugen ist hier noch anzuführen, daß das Braunjura-Gebiet in der Altdorfer Gegend, ferner dasjenige zwischen Neumarkt i. Opf. und Weißenburg a. S. noch nicht auf die Denudations-Flächen hin untersucht ist. Durch Begehungen wurde hier lediglich nachgewiesen, daß hier im Ornamenten Phosphorite vorkommen, daß also das obere Callovien in der phosphoritischen Facies ausgebildet ist.

Die vierte Kartenskizze (D) zeigt das Liegende der Geröll-Lage. Es ist hier dargestellt, wie tief die Denudations-Flächen reichen, beziehungsweise welche Callovien-Zone jeweils als höchste anstehende Schicht noch unter der Geröll-Zone und der Weißjura-Decke vorhanden ist.

2. Zusammenfassung der Ergebnisse.

Allgemeines.

Der obere Braune Jura der Fränkischen Alb besitzt drei verschiedene Facies-Arten, die je nach dem Versteinerungsmittel der Fossilien als Kalk-, Phosphorit- und Pyrit-Facies bezeichnet werden können.

Die normale Facies ist die Kalk-Ablagerung; diese wird durch die von Norden nach Süden vordringende Phosphorit-Facies verdrängt und letztere wird wiederum streckenweise durch die Pyrit-Facies ersetzt. Bei dem Zurückweichen der Pyrite folgen zunächst wieder die Phosphorite und dann die Kalke.

Der Facieswechsel geht unabhängig von der (vertikalen) Zonen-grenze vor sich.

Er wirkt derart auf die Fauna ein, daß die Ammoniten, welche in den Kalken große Formen aufweisen, in den phosphoritischen Ablagerungen kleiner werden und in der Pyritregion nur noch eine zwar individuenreiche, aber verkümmerte Fauna bilden.

Das Callovien.

Das Callovien läßt sich gliedern. Für die Gliederung bilden die Cosmoceraten ausgezeichnete Leitfossilien.

Die Zonen sind:

Zone des *Cosmoceras ornatum* (oben),
 " " *C. Castor* und *C. Pollux,*
 " " *C. Jason,*
 " " *Macrocephalites macrocephalus* (unten).

Die Schichten des Callovien’s fielen vor Ablagerung der Weißjura-Sedimente teilweise einer Zerstörung, vielleicht durch Meeresströmungen, anheim.

Die Denudation scheint während der Biarmaten-Zeit stattgefunden zu haben. Es läßt sich dadurch das Fehlen dieser Zone im Frankenjura — abgesehen von geringen Ablagerungen in der Oberpfalz — erklären.

Die Denudation reicht verschieden tief, an einzelnen Stellen bis auf die Macrocephalens-Zone. (Die Mächtigkeit der zerstörten Schichten dürfte im Maximum kaum 10 m überschritten haben.)
Die Ausbildung des oberen Brauen Jura im nördlichen Teile der Fränkischen Alb.

Das zerstörte Material wurde durch die Wasserbewegung geschlammmt, die Schlämmungs-Produkte sind in den Geröll-Lagen und der Glaukonit-Schicht enthalten.

Durch die vorgenommenen Profil-Grabungen und die dabei angestellten Beobachtungen war es möglich, die Denudations-Flächen und ihre Tiefe festzustellen. Ebenso konnten durch Bearbeitung der in den sekundären Ablagerungen gefundenen Fossilien die ursprünglich vorhandenen Zonen und ihre Facies-Arten rekonstruiert werden.

Die scheinbare Faunen-Vermengung im Callovien der Fränkischen Alb ist — abgesehen von den noch jetzt zerstörend wirkenden Faktoren — auf die genannte teilweise Zerstörung der Sedimente zur Biarmaten-Zeit zurückzuführen.
Orts-Register.

(Zu Teil 1 und 11.)

Adlholz (bei Vilseck) 54.
Amberg 56, 66.
An (bei Pittersberg) 58.
Auerbach 42, 50—54, 63, 66, 67, 68, 77.
Bärenricht (bei Sulzbach) 55—57, 77, 89.
Bodendorf (bei Trockau) 42—46, 78.
Boudorf (bei Schmitttach) 16—17, 75, 78.
Bachau (bei Pegnitz) 46, 47.
Büchenbach (bei Pegnitz) 43, 46.
Burglengenfeld 59, 68.
Burgstall (bei Oberusees) 42, 78.
Busbach s. auch Steinleite 66.
Cordischt (bei Weismain) 30, 64.
Ebermannsdorf (bei Theuern) 58, 68.
Ebermannstadt 7.
Edelsfeld (bei Sulzbach) 54, 68.
Ehrenburg (bei Forchheim) 7, 64.
Frankendorf 17, 87.
Friesen 6, 21—23, 67.
Friesener Warte 21.
Fronberg (bei Schwandorf) 69.
Galgenberg (bei Regenstauf) 61, 69.
Gassenhof (bei Ebermannstadt) 7.
Glech (bei Scheßlitz) 23.
Groß-Saltendorf (bei Burglengenfeld) 76.
Gunzendorf (bei Auerbach) 50.
Hahnenkamm (bei Heidenheim) 63, 66, 68.
Hartmannshof (bei Hersbruck) 17, 67 Anm.
Hanselbach-Tal (W. von Schwandorf) 58.
Heidenheim a. H. 63, 67 Anm.
Hersbruck 16, 66.
Hesseberg 63, 64.
Hohenstadt (bei Hersbruck) 6.
Kaltenbuch (bei Weißenburg) 84.
Kasendorf 35—38, 77, 87.
Kautschen-Berg (bei Frankendorf) 17.
Keilberg (bei Regensburg) 62, 69, 73, 76, 80.
Kirchenthumbach 49.
Kirchleus 30, 64, 83, 84.
Kletzhöfe (bei Thurnau) 57.
Krumbach (bei Amberg) 57.
Lange Meile (bei Forchheim) 6.
Langheim (bei Lichtenfels) 25.
LAYER-BORG (bei Erlangen) 8—13, 64, 65, 68, 77, 87.
Lochau s. Steinleite.
Löhlitz (bei Waischenfeld) 42.
Laudag (bei Scheßlitz) 23—25, 71, 73 Anm., 75.
Mariahilf-Berg (bei Amberg) 57.
MELKENDORF (bei Busbach) 38.
Mönch (bei Thurnau) 38.
Münch-Berg (bei Burglengenfeld) 59.
Münchshofen (bei Burglengenfeld) 59, 76, 79, 80.
Neubürg (bei Oberneuses) 42.
Neumarkt i. Opf. 3, 16, 35, 66.
Nenzkirchenhof (bei Kirchenthumbach) 50.
Nipf (bei Bopfingen) 63.
Oberbächfeld (bei Neumarkt i. Opf.) 75.
Oberlangheim 29.
Oberneuses 42, 78, 87.
Oberrüttelbach (bei Gräfenberg) 14—16, 87.
Paulsdorf (bei Amberg) 58.
Pegnitz 42, 46, 66.
Pinzg-Kapelle (bei Auerbach) 50.
Pommer (am Leyerberg bei Erlangen) 9.
Premberg (bei Burglengenfeld) 60, 61, 76, 83.
Rabenstein (i. d. Fränkischen Schweiz) 42, 43, 66, 87.
Regenstauf 61, 69, 76, 84.
Rodeling 69.
Rothenberg (bei Schmitttach) 6, 68, 87.
Scheßlitz 75, 78.
Schirmendorf (bei Kirchleus) 33, 34.
Schnaittach 16.
Schwabtal (bei Staffelstein 25.
Schwandorf 58, 59, 68, 69, 86.
Schweinumschle (i. d. Fränkischen Schweiz) 43.
Sinnlleihe (bei Bornricht unfern Sulzbach) 55—57.
Staffelberg 6.
Staffelstein 65, 78, 83.
Steglitz-Berg (bei Altenbunz) 27. Anm.
Steinleihe (bei Busbach) 38—41, 68, 71, 78, 79.
Sulzbach i. Opf. 57.
Tegernheimer Schlucht (am Keilberg bei Regensburg) 62.
Thurnau 66, 67 Anm., 69.
Tiefenstürmig (zwischen Eggolsheim und Heiligenstadt) 17—20.
Trockau 43—46, 78, 87.
Troschenreuth (bei Pegnitz) 46, 47, 48—50, 68, 71, 74, 77, 78.
Tumsdorf (bei Hollfeld) 42.
Uetzing (bei Staffelstein) 25—29, 65, 69, 77, Anm. 78, 84, 92.
Vierzehnheiligen (bei Staffelstein) 67 Anm., 78.
Vilseck 54.
Wachtknock (bei Ebermannstadt) 7.
Walkersbrunn (bei Grüfenberg) 7.
Walperle (bei Forchheim) s. Ehrenbürg.
Wasseraufingen 64, 67.
Weismain 30, 67 Anm.
Weißenbrunn (bei Kronach) 30, 64, 65, 66, 68, 84.
Weißenburg a. S. 66.
Wildenberg (bei Weißenbrunn) 29, 30—34, 67, 68, 92.
Wohnsdorf (bei Obernsees) 42, 78, 79.
Würgau (bei Scheßlitz) 24.
Zeuchbach (bei Wünschenfeld) 42.
Zipser-Berg (bei Pegnitz) 47.
Zogenreuth (bei Auerbach) 50.
Zogenreuther-Berg (bei Auerbach) 50—54, 63, 83.
Zultenberg (bei Kasendorf) 8, 37.
Inhalts-Verzeichnis.

I. Die untersuchten Profile

- Allgemeines über die Aufschlüsse in der oberen Braunjura-Stufe: Seite 5
- Der Westrand des Frankenjura
 - Der Braune Jura am Leyerberg bei Erlangen: Seite 8
 - Oberrüsselbach bei Gräfenberg: Seite 14
 - Bondorf bei Schmittach: Seite 16
 - Tiefenstürgin: Seite 17
 - Friesen: Seite 21
 - Ladwig bei Scheßlitz: Seite 23
 - Würgau: Seite 24
 - Uetzing bei Staffelstein: Seite 25

- Die nordöstliche Jurascolle bei Weißenbrunn und Kirchleus
 - Wildenberg: Seite 30
 - Kirchleus-Schimmenhof: Seite 34

- Der Ostrand des Frankenjura
 - Kasendorf: Seite 35
 - Mönchau, Kletzhöfe bei Thurnau: Seite 38
 - Steinleite bei Busbach: Seite 38
 - Wohndorf bei Obernsees, Löhlitz, Zeubach, Rabenstein: Seite 42
 - Schweinsmühle, Büchenbach: Seite 43
 - Bodendorf—Trockau: Seite 43—46
 - Buchauer Berg bei Pegnitz: Seite 46
 - Zipser Berg bei Pegnitz: Seite 47
 - Troshenreuth: Seite 48—50
 - Neuzirkendorf, Gunzendorf, Pinzig-Kapelle: Seite 50
 - Zogenreuther Berg bei Auerbach: Seite 50—54
 - Vilseck, Eidsfeld: Seite 54
 - Bernried bei Salzach: Seite 55—57

- Die Braunjura-Schichten im südlichen Teile der Oberpfalz
 - Gegend von Amberg: Seite 57
 - Paulsford, Ebermannsdorf, Haselbach-Tal, Schwandorf: Seite 58
 - Gegend von Burglengenfeld: Seite 59
 - Premberg bei Burglengenfeld: Seite 60—61
 - Galgenberg bei Regenschauf: Seite 61
 - Keilberg bei Regensburg: Seite 62

II. Die Facies-Arten des Braunen Jura in der fränkischen Alb

- Bajocien
 - Zone des Harpoceras Murchisoniae: Seite 62
 - Zone der Smirina Sowerbyi: Seite 64
 - Die Zonen des Stephanoceras Humphriesianum, des Cosmoceras bifurcatum und der Parkinsonia Parkinson: Seite 66
Inhalts-Verzeichnis.

Bathonien .. 67
Callovien .. 69–84
 Einteilung und Facies-Arten 69
 Einfluß der Facies auf die Fauna 71
 Zone des Macrocephalites macrocephalus (mit Textbeilage A) 73
 Der Ornatenton ... 75
 Zone des Cosmoeceras Jason (mit Textbeilage B) 77
 Zone des Cosmoeceras Castor und C. Pollux (mit Textbeilage C) 78
 Zone des Cosmoeceras ornatum 78
 Die Grenzsicht zwischen Callovien und Oxford 79
 Die Zonen des Fränkischen Callovien mit ihrer Ammoniten-Fauna (Tabelle) 81
 Die Geröll-Lage (mit Textbeilage D und E) 82
 Die Glaukonit-Schicht 83

Zusammenfassung und Folgerungen .. 81–93

III. Die stratigraphisch wichtigen Ammoniten-Arten des fränkischen Callovien .. 93–111

Literatur-Verzeichnis .. 94
Cosmoeceras Waagen (mit Textbeilage F) 95
 " Jason, C. Guiliemi 96
 " Castor, C. Pollux, C. ornatum 97
 " Duncan .. 98
Kepplerites Nomm ... 98
 " cf. caloviensis, K. Goweriansus 99
Macrocephalites Buch ... 99
 " macrocephalus, M. tunidus, M. Herveyi 100
Perisphinctes Waagen ... 100
 " curvicoast, P. variabilis 101
 " Steinmanni, P. subtilis, P. fanatus, P. sulciferus 102
 " Orion ... 103
Proplanulites Teissyeire 103
 " cf. subconceatus .. 103
Stephanoceras Waagen .. 103
 " coronatum ... 103
Reineckia Bayle ... 104
 " anceps .. 104
 " Stübel, K. Fransi 105
 " Rehmanni .. 106
Hecticoeceras Bonarelli 106
 " hecticum ... 106
 " hamma, H. punctatum, H. rossienne, H. Krakoviense ... 107
 " stevani, H. Brighti, H. pseudopunctatum 108
 " nodosulcatum .. 109
Oecophtichius refractus 109
Strigoceras postulatum 110
 Die Verteilung der Ammoniten im Fränkischen Callovien (Tabelle) 111

Anhang ... 111–118
 1. Erläuterungen zu den Profil- und Kartenskizzen (mit Textbeilage G, H, I) 111
 2. Zusammenfassung der Ergebnisse 113
 Ortsregister .. 115

118
Lebenslauf.

