The Bulletin of the British Museum (Natural History), instituted in 1949, is issued in four scientific series, Botany, Entomology, Geology (incorporating Mineralogy) and Zoology, and an Historical series.

The Entomology Series is produced under the editorship of the Keeper of Entomology: Dr L. A. Mound
Publications Manager (Entomology): Mr W. G. Tremewan

Papers in the Bulletin are primarily the results of research carried out on the unique and ever-growing collections of the Museum, both by the scientific staff and by specialists from elsewhere who make use of the Museum’s resources. Many of the papers are works of reference that will remain indispensable for years to come.

A volume contains about 256 pages, made up of two numbers: published Spring and Autumn. Subscriptions may be placed for one or more of the series on an Annual basis. Individual numbers and back numbers can be purchased and a Bulletin catalogue, by series, is available. Orders and enquiries should be sent to:

Sales Department,
Natural History Museum Publications,
British Museum (Natural History),
Cromwell Road,
London SW7 5BD

Telephone: 01-938-9386
Telex: 929437 NH PUBS G
Fax: 01-938-8709

© British Museum (Natural History), 1989

ISBN 0 565 06037 6
ISSN 0524 – 6431

British Museum (Natural History)
Cromwell Road
London SW7 5BD

Issued 26 October 1989

Typeset by Computer Typesetting Services, Redhill, Surrey
Printed in Great Britain by Henry Ling Ltd, Dorchester, Dorset
Ficus-feeding psyllids (Homoptera), with special reference to the Homotomidae

D. HOLLIS & P. S. BROOKFIELD
Department of Entomology, British Museum (Natural History), Cromwell Road, London SW7 5BD

CONTENTS

Introduction 131
Material, methods and terminology 132
Moraceae-feeding psyllids 133
Homotomidae Heslop-Harrison 135
Key to genera 140
Dynopsyllinae Bekker-Migdisova 141
Diceraopsylla Crawford 142
Dynopsylla Crawford 143
Austrodynopsylla gen. n. 144
Triozamia Vondrácek 145
Afrodynopsylla gen. n. 146
Macrohomotominae White & Hodkinson 147
Mycopsylla Froggatt 148
Macrohomotoma Kuwayama 151
Pseudoeriopsylla Newstead 153
Homotominae Heslop-Harrison 156
Homotoma Guérin-Méneville 157
Synoza Enderlein 165
References 166
Index 181

SYNOPSIS. The associations between *Ficus* and various groups of insects are briefly discussed. That between *Ficus* and the Psylloidea, particularly the family Homotomidae, is considered in more detail. It is concluded that, at the present level of our understanding of the phylogeny of *Ficus* and that of agaonine wasps, drosophilid flies, nymphalid butterflies and jumping plantlice, stepwise coevolution cannot be inferred in any of these associations.

The systematics of the psyllid family Homotomidae is reviewed. The family is diagnosed and considered as the sister-group of the Malvales-feeding family Carsidaridae. The 10 genera comprising the Homotomidae are diagnosed; a key is provided for their identification and a cladogram is offered, based on an analysis of 35 characters. Full synonymy and hostplant data, where known, are provided for the 72 nominal species recognised; where practical, keys to species are given. Two new genera and 15 new species are described; two family-group names, one genus-group name and one species-group name are synonymised.

INTRODUCTION

‘The combination of botanical and entomological research has now put *Ficus* in the front rank of evolutionary and phylogenetic studies’

E. J. H. Corner (1985a)

The Moraceae is a pantropical family of dicotyledonous angiosperms containing more than 1400 species in 53 genera. Most of the genera contain few species but the diverse genus *Ficus* includes more than half of the known moraceous species. The family is most closely related to the Urticaceae (Berg, 1977), and Thorne (1983) even regarded it as a subgroup of the latter.
There appears to be a consensus of opinion that the Moraceae is of Gondwanan origin. Raven & Axelrod (1974: 592) considered the family old enough for direct dispersal between Africa and South America, and Gentry (1982: 569) classed it as a Gondwanan element. However, there seems to be considerable argument concerning the palaeogeographical origin of the genus *Ficus*. Croizat (1968) argued for an early evolution in Gondwana, while Corner (1985b) forcefully maintained his long-held theory of a Laurasian ancestry for the genus. Whatever the merits of these arguments there is agreement that the present-day *Ficus*, with its closed inflorescence or syconium, arose from an ancestor with an open inflorescence in the mid Cretaceous Period, about 100 million years ago (Galil, 1977; Murray, 1985; Bouček, 1988).

The symbiotic association between *Ficus* (figs) and their fig wasp pollinators (Agaoninae) is well-documented (Wiebes, 1979; 1986 for reviews), and Jermy (1984) suggested that this association may be one of the very few true examples of coevolution between plants and insects. Pollinating fig wasps are species-specific to their fig hosts and there is a reasonable correlation between fig wasp generic or species-group classification and the subsections and series classification (Corner, 1965) of *Ficus*. In fact Ramirez (1977, 1980) suggested modifications to Corner’s arrangement of *Ficus* species, based on the specificity and morphology of their pollinating wasps. Wiebes (1982) further compared classifications of Agaoninae and *Ficus* (from Ramirez, 1980) and concluded that there is no correlation, at a higher level than that noted above, between the two classifications. Corner (1985a) reviewed the modifications suggested by Ramirez and Wiebes but rejected them, for the large part, in favour of his original classification. Miller (1987) briefly reviewed the case and considered that more rigorous cladograms were required for both groups of organisms before stepwise coevolution could be inferred.

Hill (1967) listed a further 46 genera of non-agaoine (i.e. non-pollinators sensu Bouček, 1988) fig wasps, known to be associated with fig syconia, in other subfamilies of the Agaonidae and the families Eurytomidae, Ormyridae, Eulophidae and Pteromalidae. The roles played by these wasps appear to be varied but have been little studied. Some are phytophagous, others are hyperparasites, and there is some degree of fig specificity.

Lachaise et al. (1982) reported on the association between fig syconia and two groups of drosophilid flies, *Lissoccephala* and the *Drosophila fima* species-group, in Africa. *Lissoccephala* larvae develop during the floral period of the syconium and each species of fig studied harboured a particular combination of *Lissoccephala* species; different species of figs possibly having some *Lissoccephala* species in common. *Drosophila fima* species-group larvae develop in the postsexual phase of the syconium and there appeared to be no fig species preference in this group. Lachaise et al. (1982) postulated that the speciation of *Lissoccephala* was a by-product of the coevolution of figs and their pollinating wasps.

Apart from those insects associated with fig syconia there are other groups of insects known to feed on *Ficus* species. Two such groups worthy of mention are the larvae of nymphalid butterflies, and the jumping plantlice or Psylloidea (Homoptera). Ackery (1988 and pers. comm.) has reviewed the hostplants of nymphalid larvae and recognised some Moraceae-feeding ‘themes’: Marplesiine larvae have specialised on Moraceae genera, including *Ficus*; the Limenitine genus *Pseudonepis* feeds on *Antiaris* and *Ficus*; and the genus *Euploea* (Danaidae) shows a trend towards *Ficus*-feeding but plants in the families Apocynaceae, Rubiaceae, Ulmaceae, Flacourtiaceae, and Convolvulaceae are also known hosts.

The Psylloidea (jumping plantlice) comprise a group of small, phloem-feeding sternorrhynchos bugs. Individual psyllid species show a high degree of hostplant specificity, particularly during the larval stages, and related species tend to develop on related species or groups of dicotyledonous angiosperms. Several groups of psyllids are known to utilise moraceous hostplants and one family in particular, the Homotomidae, is almost exclusively *Ficus*-feeding.

The objectives of this paper are to review the known data on Moraceae-feeding in the Psylloidea; to postulate a phylogeny for the genera of the family Homotomidae, for future comparison with a cladogram of the subgroups of *Ficus*, should this ever be produced; and to review the taxonomy of the species in the family.

MATERIAL, METHODS AND TERMINOLOGY

Most of the material studied is deposited in the British Museum (Natural History) (BMNH), with supplementary specimens from the Bernice P. Bishop Museum, Honolulu (BPBM); Muséum d’Histoire Naturelle, Geneva (MHNG); Muséum National d’Histoire Naturelle, Paris (MNHN);
Museé Royal de l’Afrique Centrale, Tervuren (MRAC); Stanford University Natural History Museum, California (SUNHM); and the National Museum of Natural History, Washington (USNM). Type material is deposited in BMNH; BPBM; MHNG; MNHN; MRAC; SUNHM; USNM; Australian National Insect Collection, Canberra (ANIC); Beijing Agricultural University Insect Collection, China (BAUIC); Entomological Institute, Hokkaido University, Sapporo (EIHU); Forest Research Institute, Dehra Dun, India (FRI); Institut für Pflanzenschutzforschung, Eberswalde (IPE); Instytut Zoologiczny, Polish Academy of Sciences, Warsaw (IZPAN); National Chung Hsing University, Taiwan (NCHU); National Collection of Insects, Plant Protection Research Institute, Pretoria (NCI); and the Zoological Survey of India, Calcutta (ZSI).

All measurements are quoted in millimetres; most were taken from slide-mounted material but overall size was taken from the anterior margin of the head to the tip of the forewing of dry-mounted material in lateral view. Other reference points from which measurements of various structures were taken are given in Holllis (1976, 1984).

Apart from the head illustrations, all figures were drawn from slide-mounted material. The inner surface of the right paramere is shown. Structural terminology follows Vondráček (1957) and Hollis (1984, 1987).

Acknowledgements. We are grateful to the following colleagues for providing loans and gifts of material: Keith Arakaki and the late Wayne Gagné (BPBM); Daniel Burckhardt (MHNG); J. Etienne, formerly of Institut Sénégalais Recherches Agricoles, Ziguinchor; and Douglass Miller and Miss Louise Russell, United States Department of Agriculture, Systematic Entomology Laboratory, Beltsville, Maryland.

FICUS-FEEDING PSIYLLIDS

MORACEAE-FEEDING PSIYLLIDS

Table 1 summarises the available data on psyllid genera associated with moraceous hosts. The genus Paurocephala has 25 species in the Old World tropics, with free-living larvae. There is one species on Artocarpus, one on Morus and three on Ficus. Most of the other species live on hosts in the Malvales (Tiliaceae, Malvaceae and Sterculiaceae) but there are a few species on Clusiaceae (Theales) and Connaraceae (Rutales). The South American species are on Melastomaceae but these are probably not con-

generic with the Old World species. The genus is most closely related to Haplaphalara and Dichidophlebia which also have hosts in the Malvales.

Phytolyma is an African genus of four species (Holllis, 1973), three on Milicia and one on Morus. The larvae are gall-forming on leaves and petioles. Its relationships are not clear but White & Hodkinson (1985) placed the genus as the sister-group of the rest of the Aphalarinae.

Anomoneura is a monobasic Asian Palaeartic genus living on Morus; it may be related to the legume-feeding genus Epipsylla (White & Hodkinson, 1985).

The triozid genus Pauropsylla has 22 species in the Old World tropics and subtropics and all confirmed hosts are Ficus spp. The larvae usually form pit galls on the host leaves. Ceropsylla fulvida is an Indian species recorded by Mathur (1975) on Ficus microcarpa [as macrocarpa] and F. rumphii. The species is not congeneric with American Ceropsylla which are found on Ocotea (Lauraceae) and Sideroxylon (Ebenaceae). Triozoa is a large and probably paraphyletic genus of some 600 species (Holllis, 1984). Three species are known to occur on Ficus species. T. buxtoni is a Middle Eastern species on F. carica and the larvae cause severe leaf distortion; T. ficicola is a South African species on Ficus sp.; T. brevigena occurs on Ficus sp. in N. India and its larvae cause leafmargin rolls.

The homotomid genus Triozamia is an interesting example of the degree to which psyllids are host specific (Holllis, 1984). The three known species appear to maintain separate identities on the three recognised African varieties of Antiaris toxicaria welwitschii (cf. Berg, 1978), i.e. T. lamborni on var. africana, T. vondracecki on var. welwitschii and T. usambarenensis on var. usambarenensis.

Table 2 summarises the available data on psyllids having Ficus spp. as hostplants. Using Corner’s (1965) infrageneric arrangement of Ficus some patterns can be discerned. Pauropsylla occurs mainly on subgenus Sycomorus, with a few species on section Sycidium of subgenus Ficus. The original records of P. ficicola and P. globuli on Ficus hookeriana (Kieffer, 1905; as F. hookeri) are regarded as dubious; P. ficicola adults and larvae have been collected recently from F. auriculata in N. India (BMNH data). Paurocephala species are restricted to subgenus Ficus.

Homotomid species occur mainly on the strangler and banyan subgenus Urostigma, with a few species on subgenus Ficus and one genus, Dynoppsylla, whose larvae are gall-forming, on F. nervosa of subgenus Pharmacosycea. Of the groups that
<table>
<thead>
<tr>
<th>Genera of Moraceae</th>
<th>Genera of Psyloidea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Psyllidae</td>
</tr>
<tr>
<td>Paurocephalinae</td>
<td>Aphalarinae</td>
</tr>
<tr>
<td>Antiars</td>
<td></td>
</tr>
<tr>
<td>Artocarpus</td>
<td>Paurocephala</td>
</tr>
<tr>
<td>Ficus</td>
<td>Paurocephala</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Milicia</td>
<td></td>
</tr>
<tr>
<td>(= African Chlorophora)</td>
<td></td>
</tr>
<tr>
<td>Morus</td>
<td>Paurocephala</td>
</tr>
</tbody>
</table>
occur on subgenus Urostigma, the African genus Pseudoeriopsylla is restricted to section Galoglychia while its sister-group, the Oriental genus Macrohomotoma, is on section Conosycea. Mycopsylla is less restricted with the Australasian species on section Malvanthera and the Indian species recorded from sections Urostigma and Conosycea. Homotoma species have an even broader spectrum of Ficus hosts in sections Urostigma, Conosycea and Galoglychia of subgenus Urostigma, and sections Ficus and Rhizocladus of subgenus Ficus. The record of Diceraopsylla on Ficus elastica (subgenus Urostigma, section Stilpnophyllum) is doubtful (see p. 142).

Corner’s infrageneric conspectus of Ficus is, to some extent, based on plesiomorphies and does not indicate phylogenetic relationships (Wiebes, 1979). Ramirez (1980: fig. 1) produced a ‘cladogram’ for Ficus, based on ‘fifty-four morphological characters and a few physiological characters’. Unfortunately, few of these characters were discussed and the resulting branching diagram cannot be assessed critically. However, Table 3 shows a slightly modified version of Ramirez’ cladogram of Ficus sections, and the homotomid genera that are associated with these sections. Clearly stepwise coevolution cannot be inferred from these data.

The cladogram of homotomid genera (Fig. 1) is presented so that, when a more rigorous phylogeny of Ficus is produced and more reliable hostplant data for the psyllids are gathered, the case may be reconsidered.

HOMOTOMIDAE

Heslop-Harrison

Carsidarinae Crawford; Yang, 1984: 168, in part.

Diagnosis. A pair of strong tubercles present on metapostnotum; ventral sense organs of hind femur in basal position, proximal organ offset from distal pair; Ω protiger bipartite (not in Synoza); Ω subgenital plate without laterodorsal appendages; rs-m crossvein absent from forewing.

HOSTPLANTS. Moraceae (Aniarias and Ficus).

DISCUSSION. As diagnosed here the family contains the following genera: Diceraopsylla, Dynopsylla, Austrodynopsylla, Triozia, Afrodyopsylla, Mycopsylla, Macrohomotoma, Pseudoeriopsylla, Synoza and Homotoma. Diceraopsylla is reassigned from the Aphalaridae, and Triozia is transferred from the Triozidae. Austrodynopsylla and Afrodyopsylla are described as new below.

The group was erected by Heslop-Harrison as a tribe of his polyphyletic subfamily Ciriacreminae, to contain the genera Homotoma, Psasia, Labobrachia, Metapsasia, Mycopsylla, Sphingocladia, Synoza, Crawfordella and Dynopsylla. He placed Macrohomotoma in the Phacocteronini and Diceraopsylla in the Carsidarini. Of these original genera Psasia was synonymised with Homotoma by Kuwayama (1931); Labobrachia and Metapsasia were inferred as synonyms of Homotoma by Miyatake (1975); Sphingocladia and Crawfordella have been, most recently, synonymised with Dynopsylla by Crawford (1924) and Yang (1984) respectively. Macrohomotoma and Diceraopsylla were transferred to the Homotominae by Bekker-Migdisova (1973) and Diceraopsylla was erroneously transferred to the Aphalaridae by Hollis (1984).

Loginova (1964b) and Klimaszewski (1964) both noted the polyphyletic nature of Heslop-Harrison’s Ciriacreminae and regarded homotomids as a subgroup of the Carsidaridae, as did Bekker-Migdisova (1973) but her concept of the latter included several non-carsidarid groups (White & Hodkinson, 1985; Hollis, 1987). White & Hodkinson (1985) regarded homotomids as a distinct family containing the genera Homotoma, Synoza, Mycopsylla, Macrohomotoma, Pseudoeriopsylla, and probably Dynopsylla and Sphingocladia. They diagnosed the group on the following ‘derived’ characters (White & Hodkinson, 1985: 239, clade 6).

1. Adult antenna with rhinaria absent from segments 3, 5 and 7.
2. Larva with dorsal surface of thorax with distinct sclerites.
3. Larva broader than long.
4. Antenna of larva short, narrowed evenly to apex.

However, for a number of reasons this diagnosis is not valid. Character 1 does not occur in many members of the Dynopsyllinae, but is a widespread condition in the Psylloidea; character 2 is a primitive condition, occurring in other families; character 3 does not occur in Synoza or in
Table 2 Species of *Ficus* (arranged after Corner, 1965) utilised as hostplants by species of *Psylloidea*. * and § are the same records.

<table>
<thead>
<tr>
<th>Subgenus</th>
<th>Ficus infrageneric groups (after Corner, 1965)</th>
<th>Psyloidea species</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Section</td>
<td>Subsection</td>
</tr>
<tr>
<td>Urostigma</td>
<td>Urostigma</td>
<td>Religiosae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Superba</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cauloborinæ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orthoneuræ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucogynæ</td>
<td>Conosyceæ</td>
<td>Drupaceæ</td>
</tr>
<tr>
<td></td>
<td>Benjamineæ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Callophyllæ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stilpophyllum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malvantheræ</td>
<td>Malvantheræe</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galoglychia</td>
<td>Chlamydodora</td>
<td></td>
</tr>
<tr>
<td>Caulocarpaceæ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family</td>
<td>Genus</td>
<td>Subgenus</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Pharmacosycea</td>
<td>Ficus</td>
<td>Ficus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacosycea</td>
<td>Rhizocladus</td>
<td>Plagiotigmaticae</td>
</tr>
<tr>
<td></td>
<td>Sycidium</td>
<td>Pungentes</td>
</tr>
<tr>
<td></td>
<td>Varinga Palaeomorpha</td>
<td>Exasperatae</td>
</tr>
<tr>
<td></td>
<td>Sycocarpus</td>
<td>Tuberculifasciculatae</td>
</tr>
<tr>
<td></td>
<td>Sycomorus</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neomorphae</td>
<td>Auriculatae Variegatae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3 Relationships between subfamilies and genera of Homotomidae and Sections of *Ficus* (arranged according to Ramirez, 1980) and other moraceous hosts.

<table>
<thead>
<tr>
<th>Hosts</th>
<th>Homotomidae</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dynopsyllinae</td>
</tr>
<tr>
<td>Ficus sections</td>
<td></td>
</tr>
<tr>
<td>Urostigma</td>
<td>? Diceraopsylla</td>
</tr>
<tr>
<td>Leucozyne</td>
<td></td>
</tr>
<tr>
<td>Stilpnophyllum</td>
<td></td>
</tr>
<tr>
<td>Americana</td>
<td></td>
</tr>
<tr>
<td>Conosycea</td>
<td>Dynopsylla</td>
</tr>
<tr>
<td>Galoglychia</td>
<td></td>
</tr>
<tr>
<td>Malvanthera</td>
<td></td>
</tr>
<tr>
<td>Oreoacyca</td>
<td></td>
</tr>
<tr>
<td>Pharmacosycea</td>
<td></td>
</tr>
<tr>
<td>Ficus</td>
<td></td>
</tr>
<tr>
<td>Sycomorus</td>
<td></td>
</tr>
</tbody>
</table>

(After Ramirez, 1980)

<table>
<thead>
<tr>
<th>Ficus spp. (group unknown)</th>
<th>Austrodynopsylla (1 sp.)</th>
<th>Mycopsylla (1 sp.)</th>
<th>Macrohomotoma (6 spp.)</th>
<th>Pseudoeriopsylla (3 spp.)</th>
<th>Homotoma (4 spp.)</th>
<th>Synoza (2 spp.)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Antiaris toxicaria</th>
<th>Triozamia</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Host unknown</th>
<th>Afrodynopsylla (1 sp.)</th>
<th>Mycopsylla (3 spp.)</th>
<th>Macrochotoma (3 spp.)</th>
<th>Homotoma (13 spp.)</th>
<th>Synoza (1 sp.)</th>
</tr>
</thead>
</table>

several *Homotoma* species; character 4 does not occur in *Synoza* and *Macrohomotoma*.

White & Hodkinson also proposed a sister-group relationship between the Homotomidae and the Phacopteronidae but this was opposed by Hollis (1987) in favour of a sister-group pairing of the Carsidaridae + Homotomidae. Hollis used the following autapomorphies of the adults to diagnose this group.

1. Presence of a pair of large tubercles on the metapostnotum.
2. All three ventral sense organs of the hind femur in a basal position, with the most proximal organ offset from the distal pair.

The two families may be separated as follows:

1 Male subgenital plate with a pair of dorsolateral appendages; male proctiger unipartite; non-tracheate *rs-m* crossvein present in forewing

Carsidaridae

- Male subgenital plate without dorsolateral appendages; male proctiger bipartite (except *Synoza*); *rs-m* crossvein absent **Homotomidae**

The supraspecific treatment of the family given below is outlined in the following sequenced classification and the phylogeny is summarised in Fig. 1.

Family Homotomidae

- Subfamily Dynopsyllinae *(sedis mutabilis)*
 - Tribe *Diceraopsyllini*
 - Genus *Diceraopsylla*
 - Tribe *Dynopsyllini*
 - Subtribe *Dynopsyllina*
 - Genus *Dynopsylla*
 - Genus *Austrodynopsylla*
 - Subtribe *Triozamiina*
 - Genus *Triozamia*
 - Genus *Afrodynopsylla*

- Subfamily Macrohomotominae *(sedis mutabilis)*
 - Tribe *Edenini*
 - Genus *Mycopsylla*
 - Tribe *Macrohomotomini*
 - Genus *Macrohomotoma*
 - Genus *Pseudoeriopsylla*
 - Subfamily Homotominae *(sedis mutabilis)*
 - Tribe *Homotomini*
 - Genus *Homotoma*
 - Tribe *Synozini*
 - Genus *Synoza*

The three subfamilies are placed *sedis mutabilis* (sensu Wiley, 1981: 211) above, and as a trifurcation in Fig. 1 because, although each can be independently diagnosed, no pair can be diagnosed as sister-groups.
Fig. 1 Proposed cladogram for homotomid genera, with summary of hostplant and distribution data. () denotes character not shared by all members of clade. ■ derived, □ primitive condition. For characters relating to numbers see p. 140.
A major problem in the proposed phylogeny is the position of the genus *Synoza*, as it does not have a bipartite male proctiger, the one positive gain character that diagnoses the Homotomidae within the Homotomidae + Carsidaridae. An alternative to the phylogeny proposed in Fig. 1 is to place *Synoza* as the sister-group to the rest of the Homotomidae. To do this one needs to postulate convergence of antennal and forewing characters in Homotomini and Synozini, a less parsimonious hypothesis than postulating that the unipartite male proctiger of *Synoza* is a reversal.

The characters from which Fig. 1 was derived are as follows (primitive condition in parenthesis).

1. Pair of large tubercles present on metapostnotum (absent)
2. Ventral sense organs of hind femur in basal position, with the most proximal organ offset from distal pair (all three ventral sense organs of hind femur in medial position)
3. Anterolateral tubercles of vertex present (absent)
4. Vertex deeply divided by medial suture anteriorly (not deeply divided anteriorly)
5. Antennal flagellum thickened and densely hirsute (narrow, filiform, sparsely haired)
6a. Rhinaria present on 1st flagellomere (rhinaria absent from 1st flagellomere)
6b. Rhinaria basal on 1st flagellomere (rhinaria absent)
6c. Rhinaria apical on 1st flagellomere (rhinaria absent)
6d. A group of rhinaria present apically on 1st flagellomere (single rhinarium present)
7. A group of rhinaria present on 2nd flagellomere (single rhinarium subapically on 2nd flagellomere)
8. Rhinaria absent from 2nd flagellomere (single rhinarium subapically on 2nd flagellomere)
9. Antennal scape elongate (scape not elongate)
10. Non-tracheate *rs–m* crossvein present in forewing (*rs–m* crossvein absent)
11. Costal break absent (costal break present)
12. Modified pterostigma present (pterostigma absent)
13. Pterostigma ovoid (pterostigma wedge-shaped)
14. Radular areas narrow and defined (radular areas diffuse)
15. Radular area absent from *m*₂ (radular area present in *m*₁)
16. *M*+*Cu* stem absent or very short (*M*+*Cu* present)
17. *M*+*Cu* completely fused with *R*+*M*+*Cu* stem (*M*+*Cu* separate)
18a. *M* stem, distal to branching with *Cu* stem, in contact with or partly fused with *Rs* (*M* stem entirely separate)
18b. Basal part of *M* stem in contact or fused with *Rs* (*M* stem entirely separate)
19. *M₁s₂* reaching wing margin anteriorly to apex of wing (*M₁s₂* reaching wing margin posteriorly to apex of wing)
20. *Cu* stem absent or very short (*Cu* stem present)
21. *Cu* stem much shorter than *M*+*Cu* stem (*Cu* stem as long as *M*+*Cu* stem)
22. *Cu* of hindwing unbranched (*Cu* of hindwing branched)
23. *M*+*Cu* stem of hindwing indistinct or very short (*M*+*Cu* stem of hindwing clearly present)
24. Basal spine of hind tibia absent (present)
25a. Apical spurs of hind tibia grouped or few in number (apical spurs forming an almost complete ring)
25b. Outer apical spurs of hind tibia absent (a single outer apical spur present)
26a. Hind basitarsus with a single apical spur (hind basitarsus with 2 apical spurs)
26b. Hind basitarsus without apical spurs (single apical spur present)
27. Abdomen with wax-producing cells present on posterior tergites of adult (abdominal wax-producing cells absent)
28. Male proctiger bipartite (male proctiger unipartite)
29. Lateral lobes of male proctiger each with an inner apical lobe (lateral lobes without inner apical lobes)
30. Male subgenital plate with dorsolateral appendages (dorsolateral appendages absent)
31. Basal segment of aedeagus swollen apically (not swollen)
32a. Apical segment of aedeagus subdivided (not subdivided)
32b. Apical subdivision of apical segment of aedeagus long, narrow (apical subdivision short, swollen)
33. Apical subdivision of apical segment of aedeagus with ventral spiniform processes (spiniform processes absent)
34. Larva with anus and associated wax pores dorsal (anus and wax pores ventral)
35. Larva with antennal flagellum not subdivided into flagellomeres (antennal flagellum divided into flagellomeres)

Key to genera

1. Adult abdomen with groups of wax-producing cells present laterally on posterior tergites (Fig. 46)
Wax-producing cells absent from abdominal tergites

Costal break present in forewing, radular areas diffuse (Fig. 47); hind tibia with a complete crown of apical spurs (Fig. 45); hind basitarsus with 2 apical spurs; rhinaria absent from 1st flagellomere; Cu of hindwing branched (Fig. 48) (Diceraopsyllini)

DICERAOPSyllA

Costal break absent, radular areas narrow and defined (Figs 49, 51, 53, 55); hind tibia with apical spurs arranged 0 (or 1) + 4-6 (Figs 43, 44); hind basitarsus with 0 or 1 apical spur; rhinaria present basally or apically on 1st flagellomere (Figs 27-29); Cu of hindwing unbranched (Figs 50, 52, 54, 56) (Dynopsyllini) 3

Several rhinaria present at base of 1st flagellomere, 2nd flagellomere without rhinaria (Figs 28, 29); M+Cu of forewing absent or very short. Cu stem present (Figs 53, 55); branching of M and Cu of hindwing proximal, indistinct (Figs 54, 56); basal spine of hind tibia present, apical spurs of hind basitarsus absent; apical segment of aedeagus subdivided (Figs 81, 83) (Trioziamina) 4

One or more rhinaria present subapically on 1st flagellomere (Fig. 27), rhinaria present subapically on 2nd flagellomere; forewing with M+Cu present, Cu stem very short or absent (Figs 49, 51); hindwing with distinct M+Cu stem (Figs 50, 52); hind tibia without a basal spine, hind basitarsus with a single apical spur; apical segment of aedeagus undivided (Figs 77, 79) (Dynopsyllini) 5

Anterolateral tubercles of vertex absent (Figs 8, 9); antennal scape not elongate, as long as pedicel (Fig. 9); M+Cu absent from forewing (Fig. 53); lateral lobes of proctiger well-developed and with inner apical lobes; apical part of apical segment of aedeagus elongate, narrow (Fig. 81). TRIZoAZIA

Anterolateral tubercles of vertex present (Figs 10, 11); antennal scape swollen and elongate, about three times as long as pedicel (Fig. 11); forewing with short M+Cu present (Fig. 55); lateral lobes of proctiger poorly developed and without inner apical lobes; apical part of apical segment of aedeagus short, swollen (Fig. 83) AFRODYNOPSyllA

Vertex deeply divided by median suture, anterolateral tubercles present (Figs 4, 5); antennal scape elongate, at least twice as long as pedicel (Fig. 5), single rhinaria present subapically on 2nd flagellomere; forewing with M stem in contact with or partly fused with Rs (Fig. 49) . DYNOPSyllA

Vertex shallowly divided by median suture, anterolateral tubercles absent (Figs 6, 7); antennal scape slightly longer than pedicel (Fig. 7); a group of rhinaria present subapically on 1st and 2nd flagellomeres (Fig. 27); forewing with M stem entirely separate from Rs (Fig. 51)

AUSTRODYNOPSyllA

Pterostigma present in forewing, costal break absent (Figs 57-62); antennal flagellum not thickened and densely setose (Macrohomo motinae) 7

Pterostigma absent, costal break present or its position indicated by weakening of sclerotisation of C+Sc (Figs 63-74); antennal flagellum thickened and densely setose (Figs 38-40) (Homotominae) 9

Pterostigma of forewing elongate, wedge-shaped, M1+2 straight, reaching wing margin anterior to wing apex (Figs 57-59); basal segment of aedeagus swollen in apical half (Figs 84, 85) (Edenini)

MYCOPSyllA

Pterostigma short, ovoid, M1+2 curved and reaching wing margin posterior to wing apex (Figs 60-62); basal segment of aedeagus not swollen in apical half (Macrohomo motinae) 8

Forewing with Cu stem about as long as M+Cu stem (Fig. 60); basal spine of hind tibia absent. In larva anus and circumanal pore field ventral (Fig. 108); antennal flagellum clearly divided into flagellomeres MACROIIOhOMOTOMA

Cu stem much shorter than M+Cu stem (Figs 61, 62); basal spine of hind tibia present. In larva anus and associated pore field apicodorsal (Figs 109-112); antennal flagellum not clearly divided into flagellomeres PSEUDOERIOPSyllA

♂ proctiger unipartite but with well-developed lateral lobes (Fig. 105); forewing with M+Cu stem absent (completely fused with R+M+Cu), radial area absent from cell m3 (Fig. 74); hind tibia with an almost complete ring of apical spurs; apical lobes of aedeagus each with a ventral, spiniform process (Fig. 105) (Synozini) SYNOZA

♂ proctiger bipartite (Figs 99, 101-103). M+Cu stem present but sometimes immediately adjacent to R+M+Cu stem, radial area present in cell m3 (Figs 63-73); hind tibia with only part of apical ring thickened: apical lobes of aedeagus simple (Figs 99, 101-103) (Homotomina) HOMOTOMA

DYNOPSyllINAE Bekker-Migidisova

The subfamily is divided into two tribes: the Diceraopsyllini, containing Diceraopsylla, and the Dynopsyllini. The latter consists of two sister-groups: the Oriental genera Dynopsylla and Austrodynopsylla comprising the subtribe Dynopsyllina; and the African genera Trioziama and Afrodynopsylla comprising the subtribe Triozi amiina. Hostplants of the group are more diverse
than those of other subfamilies and indicate no clear patterns; *Triozamia* species live on recognised varieties of the African subspecies of *Antirhis toxicaria*, *Dynopsylla* species form galls on species of *Ficus* (Pharmacosceae) sect. *Oreosycea*, *Austrodynopsylla* is recorded from *Ficus* sp., and *Diceraopsylla* possibly feeds on *Ficus* (*Urostigma*) sect. *Stilpnophyllum*.

DICERAOPSyllINI trib. n.

This tribe displays the ground-plan features of the Dynopsyllinae and is diagnosed on the suite of primitive characters given in key couplet 2 (p. 141). Only one species is known.

Type genus: *Diceraopsylla* Crawford, here designated.

DICERAOPSylla Crawford

Diceraeopsylla Hollis, 1984: 28. [Misspelling.]

Description. Medium-sized psyllids, 4.5 mm long. Integument of head and thorax sparsely covered with very short setae. Head (Figs 2, 3), from above, narrower than mesoscutum; disc of vertex weakly concave, with clearly defined foveae and rounded margins, lateral ocelli on raised tubercles, median ocellus visible from above, anterolateral tubercles absent, antennal sockets not enlarged and head not of cleft appearance; antennal scape not enlarged or elongate, flagellum filiform. 2.4 times longer than head width, with a single subapical rhinarian on flagellomerites 2, 4, 6 and 7; genae slightly swollen ventrally; ultimate rostral segment short, less than 3 times longer than wide.

Thorax, in profile, weakly arched, pronotum narrowly visible from above. Forewing (Fig. 47) obovate with rounded apex, 2.3 times longer than wide; veins bearing short, sparse setae; C+Sc hardly thickened, costal break present, apex of *M*+2 reaching wing margin anterior to apex of wing, *M*+Cu as long as *Cu* stem, *m* cell value 1.3, *Cu* strongly arched, *cu* cell value 2.5, apex of claval suture adjacent to apex of *Cu* pedal areas diffuse and hardly distinguishable from normal wing spinules. Hindwing (Fig. 48) with *M*+Cu stem present and *Cu* branched, anal lobe not expanded, costal setae grouped. Basal spine of hind tibia absent, apical spurs forming an almost complete ring (Fig. 45); hind basitarsus with 2 apical spurs.

♂ protiger bipartite, lateral lobes weakly developed and without inner apical lobes; aedeagus 2-segmented, apical part of basal segment weakly expanded (Fig. 75).

♀ terminalia simple, conical; anus with a simple double ring of wax pores.

Hostplant. Possibly *Ficus* (*Urostigma*) sect. *Stilpnophyllus*. This is based on a record in BMNH archives of *Diceraopsylla* sp. on ‘rubber’, Malaya, Malaca; no corresponding specimen is present in the collection.

Comments. Heslop-Harrison placed this genus in the Carsidariini of his polyphyletic Cirriacremae but Bekker-Migdisova (1973) recognised *Diceraopsylla* as a homotomid and placed it in the Dynopsyllini. Hollis (1984) erroneously transferred the genus to the Aphalaridae.

One species is recognised here.

Diceraopsylla brunettii Crawford

(Figs 2, 3, 45–48, 75)

Diceraopsylla brunettii Crawford, 1912: 425; Ramakrishna Ayyar, 1924: 622; Mathur, 1975: 131; Hodkinson, 1986: 308. Holotype ♂, INDIA ‘Darjeeling’ (ZSI) [*? lost*].

Diceraeopsylla stevensi (Laing) Hollis, 1984: 28. [Misspelling.]

Diceraopsylla stevensi (Laing); Hodkinson, 1986: 308.

Hostplant. Possibly *Ficus elastica* (from BMNH records).

Recorded distribution. India (W. Bengal).

Material examined

India: 1 ♀, Darjeeling (holotype of *Pauropsylla stevensi* Laing); **Burma:** 2 ♂, 1 ♀, Kambaiti (BMNH).

Comments. The subjective synonymy proposed above is based on an examination of the available material and a comparison of the original descriptions. According to Mathur (1975), Crawford’s holotype of *Diceraopsylla brunettii* is missing from ZSI collections.
FICUS-FEEDING PSYLLIDS

DYNOPSyllINI Bekker-Migdisova

Diagnosis. Rhinaria present basally or apically on 1st flagellomere; in forewing costal break absent, radial areas narrow and defined, venation modified with either M+Cu stem or Cu stem reduced or absent; Cu stem of hindwing unbranched; apical spurs of hind tibia arranged 0 or 1 + 4–6; hind basitarsus with 0 or 1 apical spur.

Four genera are recognised here in two subtribes, the Oriental Dynopsyllina, and the Afrotropical Triozamiina.

DYNOPSyllINA Bekker-Migdisova

Diagnosis. Rhinaria present subapically on 1st and 2nd flagellomeres; forewing with M+Cu present and Cu stem very reduced or absent, M_{1+2} reaching wing margin anterior to wing apex; hindwing with distinct M+Cu stem; hind tibia without basal spine, apical spurs arranged 1 + 4, hind basitarsus with 1 apical spur; apical segment of aedeagus undivided.

Comments. This subtribe contains two genera, Dynopysya and Austrodynopsylla, species of which have an Oriental and Melanesian distribution.

DYNOPSYLLA Crawford

Dynopysya Crawford; Enderlein, 1921: 119. [Misspelling.]

Description. Large psyllids, up to 7.5 mm long. Integument of head and thorax with a moderately dense covering of long setae. Head (Figs. 4, 5), from above, narrower than mesoscutum; disc of vertex concave and deeply divided by median suture, foveae moderately defined, frontal margin rounded and deeply incised by median suture, lateral margins rounded, occipital margin obtuse-angular, lateral ocelli on raised tubercles, median ocellus visible from above, anterolateral tubercles strongly developed, antennal sockets enlarged giving head a cleft appearance; antennal scape enlarged and elongate, at least twice as long as pedicel, flagellum elongate filiform, with a single subapical rhinarium on flagellomeres 1, 2, 4, 6 and 7; ultimate rostral segment 2.5–5.0 times longer than wide.

Thorax, in profile, strongly arched (Fig. 41), pronotum narrowly visible from above. Forewing (Fig. 49) ovate, with acute apex, about 2.4 times longer than wide; veins bearing long setae. C+Sc thickened, costal break absent. apex of M_{1+2} reaching margin anterior to apex of wing. M+Cu long. Cu stem short or absent, m_{1} cell value about 1.6, cu_{1} cell value about 1.0, apex of claval suture distant from apex of Cu_{n}, radial areas clearly defined; hindwing (Fig. 50) broad, M+Cu stem present, Cu unbranched, anal lobe not enlarged. Basal spine of hind tibia absent, apical spurs arranged 1 + 4; hind basitarsus with 1 apical spur.

♂ proctiger bipartite. lateral lobes developed but without inner lobes; aedeagus 2-segmented (Fig. 77), basal segment not expanded.

♀ genital segment conical, anal pore ring convoluted.

Larva. 5th instar larva of D. pinnativena described by Yang (1984).

Hostplants. Ficus (Pharmacosycea) sect. Oreo-sycea; larvae are gall-forming.

Comments. The three species known in this genus all occur on Ficus nervosa. They may be separated using the following key:

1. Cu stem absent; M stem contiguous with basal part of Cu_{k} and medial part of Rs (see Crawford, 1924: 620, fig. 3); antennal pedicel with large ventral lobe grandis

- Short Cu stem present; M stem contiguous with medial part of Cu_{k} and medial part of Rs (Fig. 49); antennal pedicel without ventral lobe 2
Dynopsylla cornuta Crawford

Hostplant. Ficus nervosa; Crawford (1924) stated that the species is gall-forming but did not describe the gall.

Recorded distribution. Philippines (Luzon and Palawan).

Material examined

Dynopsylla grandis Crawford

Undetermined species [psyllid] Ramakrishna Ayyar, 1920: 1030.

Dynopsylla grandis Crawford; Mani, 1973: 283, [286, probable misidentification]. [Mispelling.]

Hostplant. Ficus nervosa; Ramakrishna Ayyar (1920) records this species as forming midrib galls on the upper leaf surface.

Recorded distribution. India (Kerala). The four specimens Crawford (1925b) records from Brazil are regarded as bearing incorrect data.

Material examined

India: 3 ♀ (syntypes, USNM).

Dynopsylla pinnatifavana (Enderlein)

(Figs 49, 50, 77)

Sphingocladia pinnatifavana Enderlein, 1914: 231; 1918: 482; 1926: 399; Mathur, 1973: 71. Holotype △, 'FORMOSA' (IPE) [not examined].

Dynopsylla (Sphingocladia) pinnatifavana (Enderlein) Kuwayama. 1922: 368.

Hostplant. Ficus nervosa; Takahashi (1936) records this species forming leaf-margin rolls.

Recorded distribution. Taiwan.

Material examined

Vietnam: 1 ♀ (MNHN).

AUSTRODYNPSYLLA gen. n.

Type species: Austrodynopsylla encala sp. n., here designated.

Description. Large psyllids, up to 5.5 mm long. Integument of head and thorax with a moderately dense covering of long setae. Head (Figs 6, 7), from above, narrower than mesocutum; disc of vertex weakly concave with defined foveae, shallowly divided by median suture, anterior and lateral margins rounded, occipital margin obtuseangular, lateral ocelli on raised tubercles, median ocellus visible from above, anterolateral tubercles absent. Antennal sockets not enlarged and head without cleft appearance; scape not enlarged or elongated; flagellum filiform, 2.4 times longer than head width, with a group of apical rhinaria on flagellomeres 1, 2 and 4, two rhinaria on flagellomere 6 and a double rhinarium on 7; ultimate rostral segment about 3 times longer than wide.

Thorax, in profile, moderately arched, pronotum narrowly visible from above. Forewing (Fig. 51) obovate with rounded apex, about 2.3 times longer than wide, veins bearing long setae. Apex of M1+2 reaching margin anterior to wing apex, M+Cu stem present, Cu stem virtually absent, m1 cell value about 1.0, cu1 cell value about 1.25, apex of claval suture distant from apex of Cu1b, radial areas clearly defined. Hindwing (Fig. 52) broad, M+Cu stem present, Cu unbranched. Basal spine of hind tibia absent, apical spurs of hind tibia arranged 1 + 4 (Fig. 43), hind basitarsus with a single apical spur.
Austrodynopsylla encala sp. n.

(Figs 6, 7, 27, 43, 51, 52, 78, 79)

Description. Additional to generic characters above. Antennal flagellum 2.35–2.40 times longer than head width; 1st flagellomere with a group of 4–5 rhinaria apically and a subapical rhinarium, 2nd with 3–4 apical rhinaria (Fig. 27), 3rd without rhinaria, 4th with 3 apical rhinaria, 5th without rhinaria, 6th with 2 apical rhinaria, 7th with a double apical rhinarium, 8th with one short pointed seta and one very short truncated seta apically.

Forewing (Fig. 51) hyaline, with small brown patches along R+M+Cu, at fork of M+Cu and at apex of Cu1/3; 2.13–2.34 times longer than wide, M+Cu stem as long as R stem, Rs short and curved towards M stem, branches of M of equal length; hindwing (Fig. 52) about 0.5 times as long as forewing, with irregularly grouped costal setae; apex of hind tibia as in Fig. 43.

♂ paramere (Fig. 78) lamellar, rounded apically and with a posteroapical tubercle; apical segment of aedeagus (Fig. 79) simple, end-tube of ductus ejaculatorius elongate.

♀ terminalia conical, apices of protiger and subgenital plate acute, valvulae without serrations.

Measurements (1 ♂, 1 ♀). Maximum width of head, ♂ 0.95, ♀ 0.80; length of antennal flagellum, ♂ 2.28, ♀ 1.88; length of ultimate rostral segment, ♂ 0.19; length of forewing, ♂ 3.85, ♀ 4.55; length of hind tibia, ♂ 0.98, ♀ 0.80. (♀ measurements taken from dry specimen.)

Hostplant. Adult (1 ♀) taken from Ficus sp.

Holotype ♂. New Caledonia: Mt Koghi, 400–600 m, ii.1973 (Krauss) (BPBM); slide-mounted.

Paratype. New Caledonia: 1 ♀, Ile des Pins, 7 km N. Kuto, 3–100 m, 16.viii.1979, on Ficus sp. (Gagné) (BMNH); dry mounted.

TRIOZAMIINA Bekker-Migdisova

Diagnosis. Several rhinaria present at base or all over surface of 1st flagellomere, 2nd flagellomere without rhinaria; M+Cu stem absent or very short, apex of M1+2 reaching wing margin posterior to wing apex, Cu stem present; hindwing with M+Cu stem absent or indistinct; basal spine of hind tibia present, apical spurs arranged 0 + 4–7; apical spurs of hind basitarsus absent; aedeagus 3-segmented.

Comments. This is the sister-group of Dynopsyllina; it contains two Afrotropical genera, Triozamia and Afrodynopsylla.

TRIOZAMIA Vondráček

Description. Robust psyllids, up to 5.5 mm long, somewhat dorsoventrally flattened. Integument of head and thorax densely covered with short setae. Head (Figs 8, 9), from above, slightly narrower than mesoscutum; disc of vertex concave, shallowly divided by median suture, foveae distinct, frontal margin rounded and not deeply divided by median suture, lateral and occipital margins angular, lateral ocelli not on raised tubercles, median ocellus not visible in dorsal view, anterolateral tubercles absent, genae slightly enlarged ventrally and each with a small tubercle below the antennal socket; antennal scape not enlarged or elongate, flagellum filiform, about twice as long as head width. 1st flagellomere bearing several rhinaria, 2nd without rhinaria (Fig. 28), a single subapical rhinarium present on flagellomeres 4, 6 and 7; ultimate rostral segment elongate, 4.2–6.0 times longer than wide.

Thorax, in profile, weakly arched; pronotum wide, clearly visible from above; forewing (Fig. 53) elongate ovate with subangular apex, about 2.75 times longer than wide, veins bearing short setae, C+Sc thickened, costal break absent, apex of M1+2 reaching wing margin at apex of wing, M+Cu absent, Cu stem present, m1 cell value
about 4.5, \textit{cu}, cell value about 0.5, apex of claval suture adjacent to apex of \textit{Cu}$_2$, radial areas clearly defined; hindwing (Fig. 54) narrow, \textit{M+Cu} stem not clearly defined, \textit{Cu} unbranched. Hind tibia with a basal spine, apical spurs arranged 0 + 6–7 (Fig. 44), hind basitsarus without apical spurs.

♀ proctiger bipartite, with well-developed lateral lobes that bear inner apical lobes; aedeagus 3-segmented, apical segment elongate (Fig. 81).

♀ terminalia elongate, conical; anal pore ring convoluted.

Larva. 5th instar larva of \textit{T. lamborni} described by Hollis (1984).

\textbf{Hostplant.} \textit{Antiaris toxicaria welwitchii}.

\textbf{Comments.} Hollis (1984) retained \textit{Triozamia} in the Triozidae on the basis of the triruncation of \textit{R+M+Cu} and the absence of a costal break and pterostigma in the forewing, but was doubtful of its position within that family. White & Hodkinson (1985) placed the genus as the sister-group of the rest of the Triozidae minus \textit{Neolithus}. Given the present diagnosis of the Homotomidae, \textit{Triozamia} is more naturally placed here, and the presence of wax-producing cells on the posterior tergites of the adult abdomen indicate its relationship with other members of the Dynopsyllinae. The presence of several rhinaria on the 1st flagellomere and their absence from the 2nd flagellomere, the reduced \textit{M+Cu} stem of the forewing, the proximal branching of \textit{M+Cu} in the hindwing, the absence of apical spurs on the hind basitsarus, and the 3-segmented aedeagus suggest a sister-group relationship with \textit{Afrodynopsylla}. The two genera may be separated using couplet 4 of the key (p. 141).

Three species are included, fully treated by Hollis (1984).

\textit{Triozamia lamborni} (Newstead)
(Figs 8, 9, 28, 44, 53, 54, 80, 81)

\textit{Triozamia lamborni} (Newstead); Roberts, 1969: 78. [Misspelling.]

\textbf{Hostplant.} \textit{Antiaris toxicaria welwitchii} var. \textit{africana}.

\textbf{Recorded distribution.} Senegal, Ivory Coast, Ghana, Nigeria, Zaire and Tanzania.

\textbf{Material examined}
Adults and larvae from Senegal, Guinea, Ivory Coast, Ghana, Nigeria, Zaire and Tanzania (BMNH).

\textit{Triozamia usambarensis} Hollis

\textit{Triozamia usambarensis} Hollis, 1984: 24. Holotype ♀. TANZANIA (BMNH) [examined].

\textbf{Hostplant.} \textit{Antiaris toxicaria welwitchii} var. \textit{usambarensis}.

\textbf{Recorded distribution.} Tanzania.

\textbf{Material examined}
Tanzania (type series, BMNH).

\textit{Triozamia vondraceki} Hollis

\textit{Triozamia vondraceki} Hollis, 1984: 24. Holotype ♀. UGANDA (BMNH) [examined].

\textbf{Hostplant.} \textit{Antiaris toxicaria welwitchii} [♀ var. \textit{welwitchii}].

\textbf{Recorded distribution.} Uganda, Central African Republic.

\textbf{Material examined}
Uganda, Central African Republic (type series, BMNH).

\textbf{AFRODYNOPSyllA gen. n.}

Type species: \textit{Afrodynopsylla gigantea} sp. n., here designated.

\textbf{Description.} Large psyllids, up to 8.0 mm. Integument of head and thorax densely clothed with moderately long setae and with groups of very long setae (Figs 10, 11, 42). Head (Figs 10, 11), from above, narrower than mesoscutum; disc of vertex concave, with clearly defined foveae, frontal margin rounded, lateral margins angular, occipital margin sharply defined, lateral ocelli on raised tubercles, median ocellus visible from above, anterolateral tubercles well-developed; antennal sockets enlarged, giving head cleft appearance, scape enlarged and elongate, pedicel thickened; flagellum filiform, about 2.5 times longer than head width, 1st flagellomere with basal swelling that bears a group of rhinaria (Fig. 29), rhinaria absent from 2nd flagellomere, a single rhinarium present subapically on flagellomeres 4, 6 and 7; ultimate rostral segment elongate.

\textit{D. Hollis & P. S. Broomfield}
Thorax, in profile (Fig. 42), strongly arched, pronotum broad and clearly visible from above; forewing (Fig. 55) ovate, with subacute apex, about 2.2 times longer than wide, veins bearing sparse short setae. $C+Sc$ strongly thickened, costal break absent, apex of M_{1+2} reaching wing margin posterior to wing apex, $M+Cu$ stem very short, mt cell value about 2.4, cu cell value about 1.2, apex of claval suture adjacent to apex of Cu_{sp}, radular spines in small but clearly defined groups; hindwing (Fig. 56) with $M+Cu$ stem absent, Cu unbranched, anal lobe expanded; hind tibia with a basal spine, apical spurs arranged 0 + 4.

δ prototiger bipartite, lateral lobes well-developed but without inner apical lobes; aedeagus 3-segmented.

φ terminalia conical, anus with a simple, double ring of wax-producing cells.

Larva and hostplant unknown.

Afrodynopsylla gigantea sp. n.

(Figs 10, 11, 29, 42, 55, 56, 82, 83)

Description. Antennal flagellum 2.0–2.5 times longer than head width; 1st flagellomere with a basal swelling bearing a group of 15–20 rhinaria mainly on ventral surface (Fig. 29), 8th flagellomere with a long pointed seta and a short truncated seta apically; ultimate rostral segment 4.5 times longer than wide.

Dorsum of thorax with tufts of long setae (Fig. 42); forewing (Fig. 55) 2.15–2.35 times longer than wide, membrane hyaline, $C+Sc$ considerably thickened, Rs straight; hindwing (Fig. 56) about half as long as forewing; hind tibia with a well-developed basal spine; hind basitarsus much longer than apical tarsal segment.

δ paramere as in Fig. 82; aedeagus 3-segmented (Fig. 83), apical segment short and strongly swollen apically.

φ terminalia short, conical in profile; apices of proctiger and subgenital plate acute; apices of valvulae not serrate.

Measurements (2 δ, 1 φ). Maximum width of head, δ 1.02–1.14, φ 1.14; length of antennal flagellum, δ 2.58–2.68, φ 2.21; length of ultimate rostral segment, δ 0.42–0.44, φ 0.42; length of forewing, δ 5.16–5.43, φ 5.69; length of hind tibia, δ and φ, 1.14.

Holotype δ, Angola: Salazar, I.I.A.A., 9–15.iii.1972, at light (Holli) (BMNH); dry-mounted.

Paratypes. Angola: 1 φ, same data as holotype. Central African Republic: 3 δ, 2 φ, Lobaye Mbaik, rte Mbale, 12.ii.1969, light trap in forest zone (Boulard). Nigeria: 1 φ, Ile-Ife, 11.ii.1971 (Medler). (BMNH; MNHN); dry- and slide-mounted.

MACROHOMOTOMINAE White & Hodkinson

Phacopteronini Heslop-Harrison, 1958: 578. in part.

Diagnosed by the presence of a pterostigma and the absence of a costal break in the forewing.

White & Hodkinson (1985) defined the Macrohomotominae (as clade 34, fig. 188) on the following characters.

1. Male proctiger expanded posteriorly to form caudal lobes.
2. Circum-anal ring [of wax-producing cells] of larva constricted on either side of anus, or broken into three groups.
3. Body margin of larva without sectasetae or derivable structures.
4. Dorsal surface of larva without sectasetae or derivable structures.

The first character is diagnostic for the Homotomidae and is of no value below this level. The second character is not useful as it occurs also in the Homotominae. The third character is not valid as marginal sectasetae do occur in larvae of Mycopsylla, Macrohomotoma and Pseudoerioipsylla. The fourth character is not diagnostic as sectasetae are present dorsally on the caudal plate of Pseudoerioipsylla larvae, and sectasetae are absent from the larvae of the species of Dynopsyllinae examined and described.

The only adult character found to be useful in diagnosing the Macrohomotominae is the presence of a pterostigma in the forewing, coupled with the absence of a costal break. No diagnostic characters were found in the larva.

Hostplants of the group are in Ficus (Urostigma) sects Urostigna, Conosyce, Malvantha and Galoglychia.

Two tribes are recognised.

EDENINI Bhanotar, Ghosh & Ghosh.

Type genus: Myopsylla Froggatt. Syn. n.

DIAGNOSIS. Pterostigma of forewing elongate, wedge-shaped; M_{1+2} straight, reaching wing margin anterior to wing apex; basal segment of aedeagus swollen in apical half.

A single genus, Myopsylla, is included, species of which have an Oriental and Australasian distribution.

MYCOPSylla Froggatt

Type species: *Psylla fici* Tryon, by original designation.

Type species: *Edenus gardenensis* Bhanotar, Ghosh & Ghosh, by monotypy. [Synonymised by Hodkinson, 1986: 318.]

DESCRIPTION. Medium- to large-sized psyllids, up to 8.0 mm long. Integument of head and thorax sparsely covered with short setae. Head (Figs 12–17), in dorsal view, almost as wide as mesoscutum; disc of vertex from flat to concave and deep incised by median suture, foveae weak, anterior and lateral margins rounded, ocipital margin angular, lateral ocelli not or on slightly raised tubercles, median ocellus just visible from above. Anterolateral tubercles absent or present; antennal sockets weakly enlarged, giving head a weakly cleft appearance, antennal scape not enlarged or elongate; flagellum (Figs 30, 31) filiform, 1.0–3.3 times longer than head width, a single subapical rhinarium always present on flagellomeres 2, 4, 6 and 7, and occasionally also present on 1, 3 and 5; genae swollen ventrally; ultimate rostral segment 1.8–3.4 times longer than wide. Thorax, in profile, moderately arched, meso- and metaprostum sharply descending anteriorly, pronotum hardly visible from above; forewing (Figs 57–59) narrowly obovate with acute apex, 2.4–2.7 times longer than wide, $C+Sc$ thickened basally, costal break absent, elongate wedge-shaped pterostigma present, apex of M_{1+2} reaching wing margin anterior to wing apex, $M+Cu$ stem longer or shorter than Cu stem, m_{1} cell value about 1.0, cu_{1} cell value 1.4–1.7, apex of claval suture adjacent to apex of Cu_{1}, radial areas diffuse or partly defined; basal spine of hind tibia present, apical spurs forming an incomplete ring with inner spurs larger than outer spurs; hind basitarsus with 2 apical spurs.

♀ proctiger bipartite; lateral lobes well-developed, either elongate-narrow and without inner apical lobes (Figs 84, 85) or broad-robust with inner apical lobes (Figs 87, 90); basal segment of aedeagus swollen in apical half, apical segment either elongate and simple (Figs 84, 85) or short and modified (Figs 87, 90).

♂ terminalia either short, with proctiger rounded apically and anal pore ring convoluted (Fig. 86), or conical with proctiger acute apically and anal pore ring simple (Fig. 89).

Larva. The larvae of *M. fici* and *M. proxima* are described by Froggatt (1901). Dorsal and ventral caudal plates of *M. kina* and *M. obliqua* are figured below (Figs 106, 107).

COMMENTS. Nine nominal species, including four described below, are included in the genus. However, the three recorded names for the Indian species are probably synonymous. Two species-groups can be recognised.

fici group

Antennal flagellum elongate, with rhinaria on flagellomeres 2, 4, 6 and 7, and occasionally on 1; Cu stem longer than $M+Cu$ stem; aedeagus short and robust with modified apical segment; lateral lobes of ♀ proctiger elongate-narrow; ♀ terminalia short and rounded apically, with convoluted anal pore ring.

Seven nominal species are included in this group, distributed in India, Australia, New Guinea and New Caledonia on *Ficus* (*Urostigma*) sects *Urostigma*, *Conosycea* and *Malvanthera*. Apart from the three Indian 'species' they can be individually identified by the structure of the male genitalia.

Myopsylla gardenensis (Bhanotar, Ghosh & Ghosh)

(Figs 12, 13, 57)

Myopsylla gardenensis (Bhanotar, Ghosh & Ghosh) Rajamohan et al., 1975: 138. [Misspelling.]

Myopsylla gardenensis (Bhanotar, Ghosh & Ghosh); Hodkinson, 1986: 318; Kandasamy, 1987: 69.

HOSTPLANTS. *Ficus mollis*, *F. isjehela* (or *F. virgens*). *F. microcarpa*, possibly *F. religiosa,*
Mycopsylla indica Mathur

Hostplant. Recorded by Mathur on *Santalum album* but this is regarded here as a doubtful host record as the type series was collected during the ‘Sandal Insect Survey’ and many of these records are for vagrant specimens.

Recorded distribution. India: Tamil Nadu. No material examined.

Comments. This species is probably not distinct from *M. gardenensis*.

Mycopsylla mathuriana Kandasamy

Mycopsylla mathuriana Kandasamy, 1987: 71. Holotype ♀, INDIA: on *Ficus religiosa* (ZSI) [not examined].

Hostplant. *Ficus religiosa*.

Recorded distribution. India: Tamil Nadu. No material examined.

Comments. This species is probably not distinct from *M. gardenensis*.

Mycopsylla fici (Tryon)

Psylla fici Tryon, 1895: 60. Syntypes adults, larvae and eggs, AUSTRALIA (Qld): on *Ficus macrophylla* (not traced).

Hostplant. *Ficus macrophylla*

Recorded distribution. Australia: NSW, QLD.

Material examined

Australia: NSW, QLD, Lord Howe Is. (BMNH).

Mycopsylla proxima Foggatt

Hostplant. *Ficus rubiginosa*.

Recorded distribution. Australia: NSW.

Material examined

Australia: 2 ♂, NSW, ‘on yellow fig’ BMNH.

Mycopsylla kina sp. n.

(Figs 30, 84, 106)

Description. Moderately large psyllids, up to 6.5 mm. long. Vertex concave, without anterolateral tubercles or ridges. Antennal flagellum long, 3.0-3.3 times longer than head width. 1st flagellomere (Fig. 30) with about 17 rhinaria ventrally in basal third, 2nd with 1 subapical rhinarium, 4th with 1 or 2, 6th with 1, 7th with 1, 8th with 1 short truncate and 1 long pointed seta apically; ultimate rostral segment 2.8 times longer than wide.

Forewing 2.39-2.54 times longer than wide, *M+Cu* stem shorter than *Cu* stem, *m1* cell value about 1.0, *cu2* cell value 1.7, radular areas diffuse, apex of claval suture close but not adjacent to apex of *Cu*; hindwing 0.5 times as long as forewing.

♂ *proctiger* (Fig. 84) with narrow, curved, strap-like lateral lobes without inner apical lobes; aedeagus as in Fig. 84; paramere conical (Fig. 84).

♀ terminalia short, bulbous; *proctiger* broadly rounded apically, 0.5 times as long as head width, circum-anal pore ring weakly convoluted; subgenital plate broadly incised apically.

Measurements (3 ♂, 1 ♀). Maximum width of head, ♂ 1.04-1.12, ♀ 1.18; length of antennal flagellum, ♂ 3.2-3.54, ♀ 3.52; length of ultimate rostral segment, ♂ 0.18, ♀ 0.20; length of forewing, ♂ 4.68-4.88, ♀ 6.10; length of hind tibia, ♂ 1.02-1.08, ♀ 1.10; length of ♀ *proctiger*, 0.62.

 Larva. Dorsal and ventral caudal plates and circum-anal pore as in Fig. 106, marginal sec- tasae on strongly raised bases.

Hostplant. *Ficus* sp., ‘hard fruited’.

Holotype ♀, Papua New Guinea: E. Highlands, Aiyura, 5,800’, *Ficus*, hard fruited, under latex cover, 1958 (Barrett) (BMNH); slide-mounted.

Paratypes. Papua New Guinea: 2 ♂, 6 ♀, larvae, same data as holotype (BMNH); slide- and dry-mounted.
Comments. This species may be distinguished from other members of the *fici* group by the group of rhinaria present at the base of the 1st flagellomere and the simple, non-bifid form of the male paramere.

From the data accompanying the type series it would seem that the larvae of this species live beneath a cover composed of their dried anal exudate, similar to both the described Australian species. The larvae of another member of the *fici* group, *M. gardenensis*, live within the leaf-margin rolls they induce in their host. This contrasts with the larvae of *M. obliqua* which are free-living.

Mycopsylla tuberculata sp. n.

(Figs 14, 15, 85, 86)

Description. Medium-sized psyllids, up to 5.0 mm long. Head (Figs 14, 15) with concave vertex and well-developed anterolateral tubercles. Antennal flagellum 2.5 times longer than head width, a single subapical rhinarium present on flagellomeres 2, 4, 6 and 7, 8th flagellomere with 1 long pointed medial seta and 1 short truncate apical seta; genae swollen ventrally; ultimate rostral segment 3.0 times longer than wide.

Forewings 2.54–2.62 times longer than wide, *M+Cu* stem shorter than *Cu* stem, *m1* cell value 1.0, *cu1* cell value 1.5, radular areas diffuse, apex of claval suture a little distant from apex of *Cu16*; hindwing 0.6 times as long as forewing.

♂ proctiger (Fig. 85) with strap-like, curved lateral lobes; aedeagus as in Fig. 85; paramere (Fig. 85) strongly bifid apically.

♀ terminalia (Fig. 86) short, rounded; proctiger broadly rounded apically, circumanal pore ring weakly convoluted; subgenital plate broadly incised apically.

Measurements (1 ♂, 1 ♀). Maximum width of head, ♀ 0.8, ♀ 0.84; length of antennal flagellum, ♀ 2.1; length of ultimate rostral segment. ♀ 0.15, ♀ 0.16; length of forewing, ♀ 3.46, ♀ 4.16; length of hind tibia, ♀ 0.74, ♀ 0.76; length of ♀ proctiger, 0.54.

Larva and hostplant unknown.

Holotype ♀, New Caledonia: Ile des Pins, 7 km N. Kuto, 30–100 m, 16.vii.1979 (Gagné) (BPBM); slide-mounted.

Paratypes. New Caledonia: 1 ♀, Mts des Koghis, 400–600 m, i.1969; 1 ♀, ii.1978; 1 ♀, Poindimie, 0–50 m, i.1969 (Krauss) (BPBM; BMNH); slide- and dry-mounted.

Comments. *M. tuberculata* differs from other members of the *fici* group in having well-developed anterolateral tubercles on the vertex and a distinctive aedeagal apex that bears a medioventral spinulose lobe. In *M. gardenensis* the ventral lobe is convoluted and membraneous, and in *fici* and *proxima* the structure is bilobed.

obliqua group

Antennal flagellum short, with a single apical seta and a single apical flagellum on flagellomeres 1–7; *Cu* stem shorter than *M+Cu* stem; ♀ aedeagus long and slender; lateral lobes of ♀ proctiger broad, with inner apical lobes; ♀ terminalia long, conical, acute apically, anal pore oval.

Two closely related species are included here, one from New Caledonia on *Ficus* (*Urostigma*) *Malvathera*; the other from Loyalty Is, with unknown trophic relationships.

Mycopsylla obliqua sp. n.

(Figs 16, 17, 31, 58, 87-89, 107)

Description. Moderately large psyllids, up to 5.0 mm long. Head (Figs 16, 17) with vertex weakly concave and shallowly incised by median suture, anterolateral tubercles absent. Antennal flagellum (Fig. 31) 1.25 (♂) and 1.0 (♀) times longer than head width, a single subapical rhinarium present on flagellomeres 1–7 and a single, long, subapical seta present on flagellomeres 1–6, 8th flagellomere with 2 long setae apically; ultimate rostral segment 2.0 times longer than wide.

Forewings (Fig. 58) 2.5–2.7 times longer than wide; *R1* short, one-third the length of *R* stem, *Rs* at least 3 times longer than *R* stem with its apex at the apex of the pterostigma, *M+Cu* longer than *Cu* stem, *m1* cell value 1.0, *cu1* cell value 1.4, apex of claval suture distant from apex of *Cu16*, radular areas defined; hindwing almost 0.5 times as long as forewing.

♂ proctiger (Fig. 87) with broad lateral lobes; apex of aedeagus (Fig. 87) narrow; paramere (Fig. 88) thumb-shaped in profile, inner surface with a small median tubercle, an anteroapical ridge and a posteroapical tubercle.

♀ terminalia (Fig. 89) conical, proctiger 1.06–1.08 times longer than head width, circumanal pore ring simple.

Measurements (3 ♂, 3 ♀). Maximum width of head, ♂ 0.92–0.98, ♀ 1.02–1.04; length of antennal flagellum, ♂ 1.16–1.24, ♀ 1.00–1.04; length of ultimate rostral segment. ♂ 0.10, ♀ 0.12; length of forewing, ♂ 3.56–3.88, ♀ 4.16–4.32; length of hind tibia, ♂ and ♀, 0.70–0.72; length of ♀ proctiger, 1.08–1.10.

Larva. Dorsal and ventral caudal plates and circumanal pore ring as in Fig. 107; marginal setae of caudal plates not on raised tubercles.
Hostplant. *Ficus obligua*.

Holotype ♂, New Caledonia: Noumea, ORSTOM Centre, 20–24.iii.1982, *Ficus obligua* (Hollis) (BMNH); dry-mounted.

Paratypes. New Caledonia: 6 ♂, 8 ♀, larvae, same data as holotype (BMNH; MNHN); slide- and dry-mounted.

Mycopsylla propinquia sp. n.

(Figs 59, 90, 91)

Description. Very similar to *M. obligua* but differing in forewing venation (Figs 58, 59), and in the structure of the ♀ proctiger (Figs 87, 90), aedeagus (Figs 87, 90) and paramere (Figs 88, 91).

Antennal flagellum 1.51 times longer than head width; ultimate rostral segment 1.8 times longer than wide.

Forewing (Fig. 59) 2.72 times longer than wide; *R*₁ half as long as *R* stem, *Rs* just over twice as long as *R* stem with its apex reaching the posterior margin of the pterostigma proximal to the latter's apex, *m₁* cell value 1.0, *cu₁* cell value 1.59; hindwing 0.35 times as long as forewing.

♀ proctiger (Fig. 90) with lateral lobes narrow basally and broadening apically; aedeagus (Fig. 90) bulbous apically; paramere (Fig. 91) with obliquely truncate apex, inner surface with an anterior tubercle in apical third and 2 parallel ridges anteroapically.

♀ unknown.

Measurements (1 ♀). Maximum width of head, 1.06; length of antennal flagellum, 1.60; length of ultimate rostral segment, 0.11; length of forewing, 4.68; length of hind tibia, 0.82.

Larva and hostplant unknown.

Holotype ♂, Loyalty Is: We, Lifou I., 16–18.ii.1963, light trap (*Yoshimoto*) (BPBM); slide-mounted.

MACROHOMOTOMINI

Diagnosis. Pterostigma short, ovoid; *M₁*+*₂* curved and reaching wing margin posterior to wing apex; basal segment of aedeagus not swollen in apical half.

Two genera are included here, the Oriental *Macrohomotoma* and the Afrotropical *Psuedoeriopsylla*. These genera were synonymised by Crawford (1914) and the synonymy was accepted by Enderlein (1921). White & Hodkinson (1985) treated them as separate genera and this is accepted here as both groups can be distinguished on adult and larval characteristics (see key couplet 8, p. 141), and have a clear geographical and hostplant separation.

MACROHOMOTOMA Kuwayama

Description. Large psyllids, up to 9.5 mm long. Integument of head and thorax sparsely covered with very short setae. Head (Figs 18, 19), from above, as wide as mesoscutum; disc of vertex weakly concave, foveae forming transverse depressions, anterior and lateral margins rounded, occipital margin angular, lateral ocelli not on raised tubercles, median ocellus just visible from above, anterolateral tubercles absent; antennal sockets not enlarged and head without cleft appearance; antennal scape not enlarged or elongate; flagellum short, filiform, 0.7–0.9 times as long as head width, rhinaria present on flagellomeres 1–7; genae swollen ventrally; ultimate rostral segment about twice as long as wide.

Thorax, in profile, strongly arched, pronotum visible from above; forewing (Fig. 60) ovate, with subacute apex, 2.2–2.6 times longer than wide, veins bearing short setae, *C+Sc* not thickened, costal break absent, ovoid pterostigma present, apex of *M₁*+*₂* reaching wing margin posterior to wing apex, *Cu* stem about as long as *M*+*Cu* stem, *m₁* cell value about 1.8, *cu₁* cell value about 1.0, apex of claval suture adjacent to apex of *C₁*₈₉, radial areas well-defined; basal spine of hind tibia absent, apical spurs arranged 0 + 4, hind basitarsus with 2 apical spurs.

♀ proctiger bipartite, lateral lobes well-developed and each with an inner apical lobe; aedeagus 2-segmented; basal segment weakly swollen subapically.

♀ terminalia conical, anal pore ring normally simple oval, rarely convoluted.

Larva. Anus and associated wax pores ventral (Fig. 108).

Hostplants. *Ficus* (*Urostigma*) sect. *Conosycea*.
Comments. Fourteen species are currently recognised in this genus, distributed from India to N. Queensland. However, most of these are poorly described and the genus requires revision.

Macrohomotoma apsylloides (Crawford)

Pauropsylla apsylloides Crawford, 1919:144. Synonyms: *O* and *♀*, INDONESIA, EAST MALAYSIA, MACAO, HAWAII (USNM) [not examined].

Hostplant. *Ficus* sp.

Macrohomotoma genericulata Mathur

Hostplant. *Ficus microcarpa*.

Recorded distribution. India (Uttar Pradesh, Karnataka).

Material examined

India: Karnataka, adults and larvae on *Ficus* sp. (BMNH).

Macrohomotoma gladiata Kuwayama

(Figs 18, 19, 60, 108)

Hostplant. *Ficus microcarpa* (many records as *F. retusa*).

Recorded distribution. Japan (Ryukyu Is), Taiwan. Crawford’s (1928) record of this species from Sumatra is erroneous as a male bearing Crawford’s determination label in BMNH represents a different species.

Material examined

Hong Kong: adults on *Ficus microcarpa*; adults and larvae on *F. ? benghalensis* (BMNH).

Macrohomotoma hylocola Yang & Li

Macrohomotoma hylocola Yang & Li, 1984b: 376; 380; Hodkinson, 1986: 316. Holotype *♀*, CHINA: on *Ficus* sp. (BAUIC) [not examined].

Hostplant. *Ficus* sp.

Recorded distribution. China: Yunnan. No material examined.

Macrohomotoma maculata Mathur

Hostplant. The type series was probably vagrant on the recorded host.

Recorded distribution. India: Tamil Nadu, Karnataka.

Material examined

India: 1 *♂*, 2 *♀*, Tamil Nadu (same locality as holotype, BMNH).

Macrohomotoma magna Yang & Li

Hostplant. *Ficus* sp.

Recorded distribution. China: Yunnan. No material examined.

Macrohomotoma minana Yang & Li

Macrohomotoma minana Yang & Li, 1984b: 373; 380; Hodkinson, 1986: 316. Holotype *♀*, CHINA: on *Ficus* sp. (BAUIC) [not examined].

Hostplant. *Ficus* sp.

Recorded distribution. China: Fujian. No material examined.
Macrophomotoma robusta Yang

Hostplant. Ficus benjamina.

Recorded distribution. Taiwan. No material examined.

Macrophomotoma sandakana Crawford

[Pauropsylla asylloides Crawford, 1919: 144. Misidentification, in part.]

Macrophomotoma sandakana Crawford, 1925a: 38; Hodkinson, 1983: 352. Holotype ♂, EAST MALAYSIA (USNM) [not examined].

Hostplant. Unknown.

Recorded distribution. East Malaysia: Sabah. No material examined.

Macrophomotoma sinica Yang & Li

Hostplant. Ficus microcarpa (as F. retusa). Ficus sp., ? F. microphylla [not listed by Corner (1965)].

Recorded distribution. China: Fujian. No material examined.

Macrophomotoma striata Crawford

Macrophomotoma striata Crawford; Ramakrishna Ayyar, 1924: 622. nomen nudum.

Hostplant. Ficus sp.; Miyatake’s (1965a) record of this species from the Ryuku Is on F. microcarpa (as F. retusa) is probably a misidentification.

Macrophomotoma viridis Yang & Li

Hostplant. Ficus sp.

Recorded distribution. China; Yunnan. No material examined.

Macrophomotoma williamsi Crawford

Macrophomotoma williamsi Crawford, 1925a: 37; Hodkinson, 1983: 352. Syntypes, ♂ and ♀, PHILIPPINES: on Ficus dementis (USNM) [♀ examined].

Hostplant. Ficus crassiramea var. dementis.

Recorded distribution. Philippines.

Material examined

Philippines: 2 ♀ syntypes (USNM).

Macrophomotoma yunana Yang & Li

Hostplant. Ficus sp.

Recorded distribution. China: Yunnan. No material examined.

PSEUDOERIOPSyllA Newstead

Pseudoeriopsylla Newstead, 1911: 105; Yang & Li, 1984b: 370 (as a synonym of Macrophomotoma); White & Hodkinson, 1985: 242. Type species: Pseudoeriopsylla nyasae Newstead, by monotypy.

Pseudoeriopsylla Newstead; Crawford, 1914: 62 (as a synonym of Macrophomotoma). [Misspelling.]

Description. Large psyllids, up to 8.0 mm long. Integument of head and thorax sparsely covered with very short setae. Head (Figs 20, 21), from above, almost as wide as mesoscutum; disc of vertex concave with foveae weakly defined, anterior and lateral margins rounded, occipital margin angular, lateral ocelli not on raised tubercles. median ocellus just visible from above, anterolateral tubercles absent; antennal sockets not enlarged and head without cleft appearance, antennal scape not enlarged or elongate; flagellum filiform, 1.0–1.7 times longer than head
width, rhinaria present on flagellomeres 2–7 (Figs 32–37); (sometimes absent from 5); genae slightly swollen ventrally; ultimate rostral segment short, 2.0–4.0 times longer than wide.

Thorax, in profile, moderately arched; pronotum narrowly visible from above and descending vertically behind occiput; forewing (Figs 61, 62) ovate, with subacutae apex, 2.15–2.45 times longer than wide, veins bearing sparse short setae, C+Sc slightly thickened proximally,costal break absent, well-defined subcircular pterostigma present, apex of M1+2 reaching wing margin posterior to wing apex, Cu stem much shorter than M+Cu stem, m1 cell value 1.5–1.9, cu1 cell value 0.7–1.2, apex of claval suture adjacent to apex of Cu1, radular areas well-defined; basal spine of hind tibia present, apical spurs arranged 0 + 4, hind basitarsus with 2 apical spurs.

♂ proctiger bipartite, lateral lobes well-developed, each with a small inner apical lobe; aedeagus 2-segmented, basal segment not swollen.

♀ terminalia conical, anal pore ring convoluted.

Larva. Anus and associated wax pores terminodorsal (Figs 109–112).

Hostplants. Ficus (Urostigma) sect. Galoglychia.

Comments. Crawford (1914) considered this genus to be synonymous with Macrohomotoma but White & Hodkinson (1985) regarded the two as distinct. Although clearly a sister-pair there are good characters in both larvae and adults that separate the two genera (see key couplet 8, p. 141).

Until recently Pseudoeriopsylla was thought to be monobasic but a critical examination of the available material has revealed a complex of at least six species in tropical Africa. These are differentiated and described below.

Key to species of Pseudoeriopsylla

1 Rhinaria present over whole surface of 1st flagellomere (Figs 33–35) ... 2
 Rhinaria present only apically or subapically on 1st flagellomere (Figs 32, 36, 37) 4

2 Rhinaria present over whole lengths of flagellomeres 2–5 (Fig. 35); ♂ paramere (Fig. 96) obliquely truncate apically; ♀ proctiger not less than 1.4 times longer than head width .. carvalhoi
 Rhinaria present only subapically on flagellomeres 2–5 (Figs 33, 34); ♂ paramere (Figs 93, 95) rounded apically; ♀ proctiger not more than 1.3 times longer than head width ... 3

3 ♂ paramere (Fig. 95) narrow, thumb-like, anterior tubercle on inner surface hook-like medleri
 ♂ paramere (Fig. 93) broader, anterior tubercle on inner surface truncate ... laingi

4 ♂ paramere (Fig. 92) conical, with a subacute apical tubercle; 1st and 2nd flagellomeres with several rhinaria subapically (Fig. 32) .. nyasae
 ♂ paramere thumb-shaped (Figs 97, 98), with two tubercles on inner surface subapically; 1st and 2nd flagellomeres each with a single subapical rhinaria (Figs 36, 37) .. 5

5 Antennal flagellum not less than 1.4 times longer than head width; ♂ paramere broad (Fig. 97) kenyae
 Antennal flagellum not more than 1.25 times longer than head width; ♂ paramere narrow (Fig. 98) etiennei

Pseudoeriopsylla nyasae Newstead (Figs 32, 92, 109)

Pseudoeriopsylla nyasae Newstead, 1911: 105; Yang & Li, 1984b: 369; White & Hodkinson, 1985: 162. Syntypes ♀ and larvae, MALAWI: on Ficus sp. (larvae BMNH, ♀ not traced) [examined].

Hostplant. Subsect. Chlamydogora, Ficus thonningii (some records as F. petersii). The type series was recorded from ‘Kachire’ which, according to Binns (1972), is a vernacular name used for Ficus natalensis, F. thonningii, and F. scassellatii (= F. kirkii).

Recorded distribution. Malawi, Mozambique.

Material examined
Adults and larvae from: South Africa (TvL), on ‘F. petersii’; Malawi, Tanzania, Zaire.

Pseudoeriopsylla laingi sp. n. (Figs 20, 21, 33, 61, 93, 94, 110)

Description. Antennal flagellum 1.46–1.70 (♂) and 1.19–1.28 (♀) times longer than head width; rhinaria present over most of surface of 1st flagellomere, 3 subapically on 2nd (Fig. 33), 0–2 subapically on 3rd, 1–2 subapically on 4th, none on 5th, 3–4 subapically on 6th, 2 subapically on 7th, 8th bearing 2 subequal setae apically; ultimate rostral segment 2.5–3.0 times longer than wide.

Forewing 2.20–2.45 times longer than wide, pattern dimorphic (as in Figs 61, 62); m1 cell value
Ficus-feeding Psyllids

1.5–1.7, cu_1 cell value 0.7–1.1 (higher in W. African populations).

♂ paramere (Fig. 93) broad in profile, rounded apically, inner surface with 2 subapical tubercles, the anterior one truncate apically; apical segment of aedeagus as in Fig. 94.

♀ proctiger 1.20–1.27 times longer than head width.

Measurements (6 ♂, 5 ♀). Maximum width of head, ♂ 0.97–1.12, ♀ 1.06–1.20; length of antennal flagellum, ♂ 1.42–1.88, ♀ 1.30–1.42; length of ultimate rostral segment, ♂ 0.16–0.19, ♀ 0.15–0.20; length of forewing, ♂ 4.12–5.95, ♀ 4.80–6.68; length of hind tibia, ♂ 0.88–1.10, ♀ 0.92–1.10; length of ♂ proctiger, 1.28–1.52.

Larva. Dorsal and ventral caudal plates and circum-anal pore ring as in Fig. 110.

Hostplant. Subsect. Chlamydoteraceae; Ficus thonningii, F. natalis

Holotype ♂, Angola: Chianga, 12.iv.1975, on Ficus thonningii (van Harten) (BMNH); dry-mounted.

Comments. This species appears to be close to medleri and nyasae and replaces the latter on the same host from Kenya northwards and westwards.

Dr A. Polaszek (pers. comm.) has reared specimens of Psyllaepagrus secus Prinsloo (Chalcidoidea: Encyrtidae) and Diitya sp. (Cynipoidea: Charipidae) from 5th instar larvae of the population from Kawanda Res. Stn. Uganda, mentioned in the above paratype series.

Pseudeoripyssa medleri sp. n.

(Figs 35, 95)

Description. Antennal flagellum 1.32–1.41 (♂) and 1.14–1.16 (♀) times longer than head width; rhinaria present over most of surface of 1st flagellomere (Fig. 34), 6 subapically on 2nd, 1–3 subapically on 3rd, 1–2 subapically on 4th, 1 apically on 5th, 3 subapically on 6th, 2 apically on 7th, 8th bearing 2 subequal setae apically; ultimate rostral segment 2.3–3.1 times longer than wide.

Forewing pattern similar to that in Fig. 62, 2.18–2.34 times longer than wide, m_1 cell value 1.6–1.9, cu_1 cell value 1.13–1.19; hindwing 0.5 times as long as forewing.

♂ paramere (Fig. 95) narrow in profile, rounded apically, inner surface with 2 subapical tubercles, the anterior one hook-like.

♀ proctiger 1.2 times longer than head width.

Measurements (4 ♂, 2 ♀). Maximum width of head, ♂ 0.91–0.98, ♀ 1.02; length of antennal flagellum, ♂ 1.20–1.38, ♀ 1.16–1.18; length of ultimate rostral segment, ♂ 0.12–0.14, ♀ 0.13; length of forewing, ♂ 4.28–4.64, ♀ 4.72–4.76; length of hind tibia, ♂ and ♀ 0.86–0.88; length of ♂ proctiger, 1.20–1.22.

Larva and hostplant unknown.

Holotype ♂, Nigeria: S. E. State, Oban, 7.iv.1975 (Medler) (BMNH); dry-mounted.

Paratypes. Nigeria: 13 ♂, 4 ♀, same data as holotype (BMNH); slide- and dry-mounted.

Comments. P. medleri appears to be close to laingi but is distinguished by the structure of the ♂ paramere.

Pseudeoripyssa carvalhosi sp. n.

(Figs 35, 96)

Description. Antennal flagellum 1.35–1.67 (♂) and 1.14–1.41 (♀) times longer than head width; rhinaria present over most of surfaces of flagellomeres 1–5 (Fig. 35), 4–6 subapically on 6th, 2 apically on 7th, 8th with 2 subequal setae apically; ultimate rostral segment 3.5–4.0 times longer than wide.

Forewing pattern similar to that in Fig. 61, often with hind margin also brown, 2.20–2.41 times longer than wide, m_1 cell value 1.7, cu_1 cell value 0.9; hindwing 0.54–0.58 times as long as forewing.

♂ paramere (Fig. 96) with obliquely truncate apex, inner surface with 1 hook-like anterodorsal and 1 simple posterodorsal tubercle.

♀ proctiger longer. 1.42–1.77 times longer than head width.

Measurements (2 ♂, 2 ♀). Maximum width of head, ♂ 0.90–0.92, ♀ 1.00–1.06; length of antennal flagellum, ♂ 1.22–1.54, ♀ 1.14–1.50; length of ultimate rostral segment, ♂ 0.15–0.16, ♀ 0.16–0.17; length of forewing, ♂ 3.80–3.96, ♀ 4.42–4.72; length of hind tibia, ♂ 0.82–1.02, ♀ 0.82–1.14; length of ♀ proctiger, 1.42–1.88.

Larva unknown.
HOSTPLANT. Subsect. Caulocarpeae, **Ficus ovata** (= *F. brachypoda*).

Holotype ♂, **Angola**: Duque de Braganca Falls, 11–12.iii.1972, *Ficus brachypoda* (Holmis) (BMNH); dry-mounted.

Comments. *P. carvalhoi* differs from the other known species of the genus in the extreme proliferation of rhinaria on the antennal flagellum and the elongate female proctiger. The host species also belongs to a different subsection of Sect. Galoglychia.

Pseudoeriopsylla kenya sp. n.

(Figs 36, 97, 111)

Description. Antennal flagellum 1.53–1.57 (♂) and 1.38 (♀) times longer than head width; a single apical rhinarium present on 1st flagellomere, 1 on 2nd (Fig. 36). 0–1 on 3rd, 1–2 on 4th, none on 5th, 1–2 on 6th, a double rhinarium on 7th, 8th with 2 subequal setae apically; ultimate rostral segment 3.0–3.6 times longer than wide.

Forewing pattern as in Fig. 61. 2.25–2.36 times longer than wide, *m*, cell value 1.7, *cu*1 cell value 1.2; hindwing 0.55–0.57 times as long as forewing.

♂ paramere (Fig. 97) broad in profile, with rounded apex, inner surface with 1 subapical anterior tubercle and 1 posteroapical tubercle.

♀ proctiger 1.2 times longer than head width.

Measurements (2 ♂, 1 ♀). Maximum width of head, ♂ 1.08–1.10, ♀ 1.10; length of antennal flagellum, ♂ 1.68–1.70, ♀ 1.52; length of ultimate rostral segment, ♂ 0.18–0.19, ♀ 0.18; length of forewing, ♂ 4.72–4.80, ♀ 5.13; length of hind tibia, ♂ 1.14–1.20, ♀ 1.12; length of ♀ proctiger, 1.32.

Larva. Dorsal and ventral caudal plates and circum-anal pore ring as in Fig. 111.

Hostplant. Ficus sp.

Holotype ♂, **Kenya**: L. Naivasha, W. shore road, 6 200′, 21–22.vi.1974, *Ficus sp.* (Holmis) (BMNH); dry-mounted.

Paratypes. **Kenya**: 1 ♂, 3 ♀, larvae, same data as holotype: 1 ♂, 2 ♀, Nairobi, Karen, 5,500′, 7.vii.1974, *Clausena anisata* (Holmis) (BMNH); slide- and dry-mounted.

Comments. *P. kenya* and *etiennei* differ from other species of the genus in the lack of multiple rhinaria on the first two flagellomeres. They differ from one another in the relative lengths of the antennal flagellum and the form of the male paramere.

Pseudoeriopsylla etiennei sp. n.

(Figs 37, 62, 98, 112)

Description. Antennal flagellum 1.17–1.24 (♂) and 1.0 (♀) times longer than head width; a single apical rhinarium on 1st flagellomere, 1 on 2nd (Fig. 37), none on 3rd, 1 on 4th, none on 5th, 1 on 6th, a double rhinarium apically on 7th, 8th with 2 subequal setae apically; ultimate rostral segment short, 2.0 times longer than wide.

Forewing (Fig. 62) 2.15–2.31 times longer than wide, *m*, cell value 1.9, *cu*1 cell value 1.05; hindwing 0.5 times as long as forewing.

♂ paramere (Fig. 98) narrow in profile, with rounded apex, inner surface with a bifid tubercle anteroapically.

♀ proctiger 1.2 times longer than head width.

Measurements (2 ♂, 2 ♀). Maximum width of head, ♂ 1.08–1.16, ♀ 1.20–1.24; length of antennal flagellum, ♂ 1.34–1.36, ♀ 1.20–1.24; length of ultimate rostral segment, ♂ and ♀, 0.12; length of forewing, ♂ 4.81–4.89, ♀ 5.09–5.30; length of hind tibia, ♂ 0.94, ♀ 0.96–1.02; length of ♀ proctiger, 1.4–1.5.

Larva. Dorsal and ventral caudal plates and circum-anal pore ring as in Fig. 112.

Hostplant. Ficus sp.

Holotype ♂, **Senegal**: Kamobeul-Essyl, 27.xi.1982, *Ficus sp.* (Etienne) (MNHN); slide-mounted.

Paratypes. **Senegal**: 1 ♂, 2 ♀, larvae, same data as holotype (BMNH); slide-mounted.

HOMOTOMINAE

Homotomini

Diagnosis. Antennal flagellum thickened and densely setose; in forewing costal break present or at least indicated by a weakly sclerotised area of the cuticle in the break area, pterostigma absent.

The subfamily comprises two tribes, the Homotomini with an Old World distribution, and the Synozini with a New World distribution.
HOMOTOMI Heslop-Harrison

DIAGNOSIS. In forew ing M+Cu stem present, sometimes immediately adjacent to R+M+Cu stem and R stem, radial area present in cell m; hind tibia with only part of apical spur ring thickened; o proctiger bipartite, basal segment of aedeagus strongly expanded in apical half.

A single, Old World genus, Homotoma, is recognised, with hostplants in Ficus (Urostigma) sects Urostigma, Conosyce and Galaglychia, and Ficus (Ficus) sects Ficus and Rhizocladius.

HOMOTOMA Guérin-Méneville

Anixostrepta Foerster, 1848: 92; Frauenfeld, 1867: 804; Meyer-Dür, 1871: 403. Type species: Chermes ficus Linnaeus, by monotypy. [Objective synonym of Homotoma.]

Caenohomotoma Yang & Li, 1981: 78, 85. Type species: Caenohomotoma spiraea Yang & Li, by original designation. [Synonymised with Homotoma by Hodkinson, 1986: 312.]

Labobracha Yang & Li, 1984a: 217. [Misspelling.]

Psauinia Yang & Li, 1984a: 217 (nee Enderlein). Type species: Homotoma distincta Crawford, by original designation and monotypy. [Homonym of Psauinia Enderlein, objective synonym of Harrisonella, and syn. n.]

Australohomotoma Hodkinson, 1986: 312. [Misspelling.]

DESCRIPTION. Medium- to large-sized psyllids, up to 6.5 mm. Integument of head and thorax densely covered with long setae. Head (Figs 22–24), from above, about as wide as mesoscutem; vertex from shallowly to deeply concave, anterior margin rounded and often deeply incised by median suture, lateral margins rounded or obtusangular, ocipital margin angular, median ocelloci just visible from above, lateral ocelli on weak swellings, anterolateral tubercles absent, antennal sockets enlarged and giving head a cleft appearance; antennal flagellum (Figs 38–40) swollen and densely hirsute, rounded or flattened in cross-section, a single apical rhinarium present on flagellomeres 2, 4, 6 and 7, flagellomere 8 very reduced and less than half length of 7; genae normally slightly swollen ventrally, small genal cones rarely developed; ultimate rostral segment short, up to twice as long as wide.

Thorax, in profile, from weakly to strongly arched; pronotum broadly visible from above, sometimes with a pair of anteromedial and a pair of anterolateral projections. Forewing (Figs 63–73) of variable shape, veins bearing long setae, C+Sc usually thickened basally, costal break present or indicated by weakening of cuticle in break area, M stem often partially fused with basal part of Rs and M1+2 and sometimes partially fused with apical part of Rs, apex of M1+2 reaching wing margin anterior to wing apex or at wing apex, Cu...
stem short or long, cells \(m_1 \) and \(cu_1 \) of very variable shape, apex of claval suture adjacent to or slightly distant from apex of \(Cu_{tp} \), radial areas from diffuse to sharply defined but always present in cell \(m_2 \); basal spine of hind tibia rarely present, apical spurs arranged 0 + 4–7; hind basitarus with 2 or rarely 1 apical spurs.

♂ proctiger bipartite, lateral lobes well-developed and with inner apical lobes; basal segment of aedeagus swollen in apical half, apical segment without ventral spiniform processes apically (Figs 99–104).

♀ terminalia conical, circum-anal pore ring simple.

Larva. Body form variable, wider than long in *H. ficus*, longer than wide in other known species. Antennae short, flagellum not subdivided except for flagellomeres 7 and 8; dorsal thoracic sclerites differentiated, separate; humeral lobes well-developed in *ficus* but not in other known species; body surface covered with lanceolate setae, in *ficus* these are mounted on elongate tubercles (White & Hodkinson, 1985), in other species these tubercles are smaller or absent; pointed setasetae present marginally; anus ventral and with a large, medially constricted circum-anal pore ring. [Larvae are described or figured for *distincta* (Heslop-Harrison, 1949), *ficus* (Boselli, 1929), *galbivittata* (Yang & Li, 1984a), *indica* (Mathur, 1975), *maculata* (Yang, 1984), *radiata* (Fang & Yang, 1986) and *wulinensis* (Yang, 1984).]

Comments. The synonymy of *Homotoma* has become confused since Enderlein erected the genus *Psasia, Metapsausia* and *Labobrachia*, based on type species previously described in *Homotoma*. Kuwayama (1931) synonymised *Psasia* with *Homotoma* but Heslop-Harrison (1949) recognised all four genera as distinct, and Mathur (1975) and Yang (1984) regarded *Psasia* as distinct. Miyatake (1975) included the type species of Enderlein’s genera in his treatment of *Homotoma*, but it is likely that he was following Kuwayama in the synonymy of *Psasia* and was unaware of Enderlein’s (1921) paper erecting *Metapsausia* and *Labobrachia*. However, Hodkinson (1983) considered that Miyatake had effectively synonymised Enderlein’s genera with *Homotoma*. This confusion was further compounded by Yang & Li (1981, 1984a) when they erected a further five genus-group names in the *Homotoma* complex, including one that is both a homonym and an objective synonym, and another that is a nomen nudum. Hodkinson (1986) considered Yang & Li’s names to be invalid and further suggested that there was no good reason for splitting *Homotoma*.

Enderlein (1914, 1921) based his genera on venational characters and Heslop-Harrison supported these arguments, adding further structural characters to support the separation of *Psasia*. The various forewing types may be characterised as follows:

1. \(M_{1+2} \) reaching wing margin at apex of wing (Figs 64, 65) [Primitive condition for Carsidaridae + Homotomidae] ‘Labobrachia’ type

2. \(M_{1+2} \) reaching wing margin anterior to wing apex (Figs 63, 66–73) ‘Homotoma’ type

3. \(M + Cu \) stem entirely separated from \(R \) stem, \(M \) stem entirely separated from \(Rs \), apex of claval suture adjacent or close to apex of \(Cu_{tp} \), radial areas diffuse (Figs 63, 66–70) ‘Homotoma’ type

4. \(M + Cu \) stem partly or entirely fused with \(R \) stem, \(M \) stem partly or entirely fused with \(Rs \), apex of claval suture distant from apex of \(Cu_{tp} \), radial areas defined (Figs 71–73) ‘Psasia’ type

5. \(M \) stem partly fused with \(Rs \), \(M_{1+2} \) entirely separate from \(Rs \) (Figs 71, 72) ‘Psasia’ type

6. \(M \) stem almost or completely fused with \(Rs \), \(M_{1+2} \) completely fused with \(Rs \) (Fig. 73) ‘Metapsausia’ type

Assuming the ‘Labobrachia’ type to be the primitive forewing condition, transformation series can be defined through the ‘Homotoma’ type to the Afrotropical species (Figs 63, 66–70) in one series, and to ‘Psasia’ types (Figs 71, 72) and ‘Metapsausia’ types (Fig. 73) in another series. It is even possible to derive the condition found in the South American genus *Synoza* (Fig. 74) from the ‘Psasia’ type. One could reasonably argue that the ‘Psasia’ type was uniquely derived from the ‘Homotoma’ type, but the ‘Metapsausia’ type could have arisen several times from the ‘Psasia’ type.

The supporting morphological characters used by Heslop-Harrison (1949) to separate *Psasia* from *Homotoma* are unlikely to be useful but the pronotum of those species with the ‘Psasia’ and ‘Metapsausia’ types of forewing, that we have examined, have anterodorsal and anterolateral projections. In those species with the ‘Labobrachia’ and ‘Homotoma’ types the pronotum is a more simple, strap-like tergite. The male genitalia of all specimens examined show no significant differences that would support Enderlein’s generic concepts. We are, therefore, following Hodkinson (1983, 1986) in recognising a single genus, *Homotoma*.

Thirty-one species are currently recognised, including four newly described below from the Afrotropical Region. All these species are listed...
below on a regional basis; a key is not provided as many of the descriptions are inadequate and we have been unable to obtain type material.

Palaeartic Region

Homotoma ficus (Linnaeus)

‘La Psyle du figuier’ Geoffroy, 1762: 484.

Chermes ficus Linnaeus, 1758: 455; Fabricius, 1794: 223.

Psylla ficus (Linnaeus) Tigny, 1802: 165; Latreille, 1804: 379; Audinet-Serville, 1825: 229; Dufour, 1833: 232; Amyot & Serville, 1843: 593.

Anisostropha ficus (Linnaeus) Foerster, 1848: 92; Frauenfeld, 1867: 801; Meyer-Dür, 1871: 403.

Hostplant. *Ficus carica*.

Recorded distribution. Bulgaria, Israel, Italy, Spain, Tunisia, Turkey, U.S.S.R. (Caucasus and Crimea), Yugoslavia.

Comments. The morphological differentiation of this species from *H. ficus* has a weak basis. Furthermore, both have been collected at the same time and locality, from the same host individual, and there is no biological evidence that the species are distinct.

Afrotropical Region

The four new species described below are the first records of the genus in this region. They are distinguished by their wing shape, venation and coloration and by the structure of the antennal flagellum.

Homotoma angolensis sp. n.

(Figs 22, 23, 39, 63, 99, 100)

Description. Dark brown psyllids with a beetle-like appearance, 3.0–3.5 mm long. Head (Figs 22, 23) with vertex flat, anterior margin weakly incised by median suture; antennal flagellum 1.9–2.0 (♂) and 1.6–1.8 (♀) times longer than head width, laterally flattened and expanded (Fig. 39). 1st flagellomere almost 3 times as long as wide, 8th flagellomere with one long pointed seta and one very short and truncate seta apically; genae with weak conical swellings ventrally; ultimate rostral segment 2.0–2.5 times longer than wide.

Thorax weakly arched, pronotum without anterior projections; forewing (Fig. 63) coriaceous, obovate with rounded apex, 2.2–2.4 times longer than wide, veins densely clothed with long sinuous setae, M stem and branches entirely separated from R stem and branches, M stem short, m1 value 2.0–2.4, Cu stem about as long as M + Cu stem, cu1 value about 0.9, apex of claval suture adjacent to apex of Cu1, radial areas diffuse; hindwing relatively long, 0.85 times as long as forewing, M unbranched, Cu branched apically; basal spine of hind tibia absent, apical spurs arranged 0 + 5; hind tibia with 2 apical spurs.

♂ proctiger (Fig. 99) with lateral lobes of basal segment well-developed, anal tube of moderate length; aedeagus (Fig. 99) with basal segment weakly expanded in apical half; inner surface of paramere (Fig. 100) with a well-developed anteromedial pointed tubercle and a diagonal ridge lying anteromedially to posteriomedially.

♀ terminalia short, conical; proctiger 1.1 times longer than head width.
Measurements (5 ♂, 4 ♀). Maximum width of head, ♂ 0.62–0.67, ♀ 0.70–0.74; length of anten-
nal flagellum, ♂ 1.20–1.36, ♀ 1.18–1.26; length of
ultimate rostral segment, ♂ 0.80–0.10, ♀ 0.10–
0.11; forewing length, ♂ 2.44–2.52, ♀ 2.96–3.04;
length of hind tibia, ♂ 0.56–0.60, ♀ 0.60–0.64;
length of ♀ proctiger, 0.76–0.80.

 Larva unknown.

Hostplant. Adults collected from Ficus thon-
ningii (Urostigma) sect. Galoglychia subsect.
Chlamydocora; possibly also F. mutandifolia.

Holotype ♂, Angola: Chianga, 21–24.iii.1972, Ficus thonninigii (Holliis) (BMNH); dry-mounted.

Paratypes. Angola: 13 ♂, 7 ♀, same data as
holotype; 6 ♀, 7.x.1971; 10♀, 14.i.1975, Ficus mutandifolia (van Harten); 11 ♂, 3 ♀, 7 mls W.
Gabela, 16–18.iii.1972, general sweeping; 1 ♀, at
light (Holliis). (BMNH); dry- and slide-mounted.

Comments. This species is recognised by the
distinctive form, venation and chaetotaxy of the
forewing. The obovate shape, and proximal branching
of M stem and Cu stem of the wing are considered to
be primitive features but the coriaceous nature of the
membrane is unique within the genus. The structure of
the antennal flagellum is highly derived in that it is short, strongly laterally flattened and with expanded flagellomeres. No
obvious close relatives are known.

Homotoma bamenda sp. n.

(Figs 24, 38, 67, 101)

Description. (Only slide-mounted material
available for study.) Antennal flagellum 1.73–
1.97 times longer than head width, flagellomeres
laterally flattened and moderately expanded (Fig.
38). 1st flagellomere 4.8 times longer than wide,
8th flagellomere with one long pointed seta and
one short truncate seta apically. Vertex flat, ante-
rior margin very weakly incised by median suture;
genae produced into long thin processes ventrally
(Fig. 24); ultimate rostral segment very short, 1.75
times longer than wide.

Thorax weakly arched, pronotum without ante-
rior tubercles. Forewing obovate with subacute
apex, 2.4–2.5 times longer than wide, membrane
hyaline with pattern as in Fig. 67; veins bearing
long straight setae, M stem and branches entirely
separated from R stem and branches, M stem
long, mi cell value about 1.0, Cu stem long, ci cell
value 1.6, apex of claval suture adjacent to
 apex of Cu₁, radial areas small and poorly
defined; hindwing 0.65 times as long as forewing,
M unbranched, Cu apparently unbranched; basal
spine of hind tibia absent, apical spurs arranged 0 +
4; hind basitarsus with 2 apical spurs.

♂ proctiger (Fig. 101) with moderately
developed lateral lobes, anal tube elongate;
aedeagus (Fig. 101) with basal segment expanded in
apical half; inner surface of paramere with 2
anteromedial tubercles.

♀ terminalia short, conical, proctiger about as
long as head width. Measurements (1 ♂, 1 ♀).
Maximum width of head, ♂ 0.60, ♀ 0.68; length of
antennal flagellum, ♂ 1.04, ♀ 1.34; length of
ultimate rostral segment, ♂ and ♀ 0.07; length of
forewing, ♂ 2.48, ♀ 3.12; length of hind tibia, ♂
0.52, ♀ 0.62; length of ♀ proctiger, 0.71.

 Larva and hostplant unknown.

Holotype ♂, Cameroon: Bamenda, 25–31.i.
1957, yellow trays (Eastop) (BMNH); slide-
mounted.

Paratype. 1 ♀, same locality as holotype,
21–24.i.1957 (BMNH); slide-mounted.

Comments. The forewing venation of this species
suggests a close relationship to *H. ficus* but the
thin, elongate genital processes of *H. bamenda*appear to be unique in the genus.

Homotoma chlamydodora sp. n.

(Figs 68, 69, 103, 104)

Description. Overall length up to 5.0 mm. Vertex
concave, anterior margin deeply incised by medial
suture. Antennal flagellum 2.52–3.23 (♂) and
2.35–2.83 (♀) times longer than head width, cir-
cular in cross-section, 1st flagellomere 5.0–7.0 times
longer than wide, 8th flagellomere with one long
pointed seta and one short truncate seta apically;
genae slightly swollen ventrally; ultimate rostral
segment short, 1.5–2.0 times longer than wide.

Thorax weakly arched, pronotum broadly visi-
ble from above and without anterior tubercles.
Forewing elongate-oval, with subacute apex,
membrane hyaline and with a dimorphic pattern
as in Figs 68, 69, 2.75–3.15 times longer than wide;
veins bearing long straight setae. M stem and
branches entirely separate from R stem and
branches, M stem long, mi cell value 0.9, Cu stem
about as long as M+Cu stem, ci cell elongate
with a value of about 2.0, apex of claval suture
adjacent to apex of Cu₁, radial areas diffuse;
hindwing 0.75 times as long as forewing, M
unbranched, Cu branching apically; hind tibia
without a basal spine, apical spurs arranged 0 +
5; hind basitarsus with a single apical spur.

♂ proctiger (Fig. 103) with moderately
developed lateral lobes and short anal tube;
aedeagus as in Fig. 103; paramere (Fig. 104)
thumb-shaped, inner surface with a single tuber-
cle anteriorly in apical third and a posteroapical
tubercle.
♀ terminalia short, conical; proctiger 0.9–1.1 times as long as head width.

Measurements (10 ♂, 9 ♀). Maximum width of head, ♂ 0.68–0.88, ♀ 0.74–0.88; length of antennal flagellum, ♂ 1.88–2.52, ♀ 1.74–2.32; length of ultimate rostral segment, ♂ 0.06–0.09, ♀ 0.07–0.08; length of forewing, ♂ 3.0–3.62, ♀ 3.08–3.88; length of hind tibia, ♂ 0.58–0.82, ♀ 0.58–0.84; length of ♀ proctiger, 0.68–0.92.

Larva unknown.

Hostplants. Adults collected from Ficus natalensis and F. thonningii; (Urostigma) sect. Galoglychia subsect. Chlamydomorae).

Holotype ♂. Tanzania: Arusha NP, Ngorudoto crater rim, c. 5000', 8.vi.1974, Ficus natalensis (Holliis) (BMNH); dry-mounted.

Paratypes. Tanzania: 3 ♂, 3 ♀, same data as holotype. South Africa: 2 ♂, 3 ♀, Pondoland, Port St John, ix–xii.1923 (Turner); 8♂, 12♀, Natal, Umtentweni, 14–17.x.1969, Ficus petersii (Capener). Kenya: 1 ♂, 1 ♀, Muguga, viii–1954, trapped (Eastop); 1 ♂, 19.xi.1969 (Brown); 1 ♂, 3 ♀, Limuru, iv.1955 (Thomas); 1 ♂, Kakamega, 1500m, 4.ii.1977 (Deharveg).

Comments. H. chlamydomora may be recognised by the venation and pattern of the forewing and the single apical spur on the hind basitarus. Probably it is most closely related to H. bammenae but has a more derived condition of the cubital vein of the forewing and the antennae have primitive, uncompressed flagellomeres.

Homotoma eastopi sp. n.

(Figs 40, 70, 102)

Description. (Only slide-mounted material available for study.) Antennal flagellum 2.67 times longer than head width, flagellomeres flat and strongly expanded (Fig. 40). 1st flagellomere not more than twice as long as wide, 8th flagellomere with one long pointed seta and one very short truncate seta apically; vertex deeply divided by median suture; genae very small, conical swellings ventrally; ultimate rostral segment short, 2.0 times longer than wide.

Thorax weakly arched, pronotum broadly visible from above and without anterior projections. Forewing narrow-elongate, with acute apex, 3.1–3.7 times longer than wide, membrane hyaline with pattern as in Fig. 70; veins bearing long straight setae, M stem and branches entirely separate from R stem and branches, m1 cell value 0.9, Cu stem about as long as M+Cu stem but 3–4 times longer than Cuii, Cui cell very elongate with a value of about 15.0, apex of claval suture close but not immediately adjacent to apex of Cuii, radial areas narrow-elongate and poorly defined; hindwing 0.75 times as long as forewing, M unbranched, Ciu branching distally; basal spine of hind tibia absent, apical spurs arranged 0 + 6; hind basitarus with 2 apical spurs.

♂ proctiger (Fig. 102) with lobes developed laterodorsally, anal tube long; aedeagus as in Fig. 102; paramere of similar profile to that of H. angolensis [inner surface not visible in holotype]. ♀ terminalia conical, proctiger 1.27 times longer than head width.

Measurements (1 ♂, 1 ♀). Maximum width of head, ♂ 0.64, ♀ 0.66; length of antennal flagellum, ♂ 1.76; length of ultimate rostral segment, ♂ 0.09, ♀ 0.10; length of forewing, ♂ 3.1, ♀ 3.72; length of hind tibia, ♂ and ♀ 0.74; length of ♀ proctiger, 0.84.

Larva and hostplant unknown.

Holotype ♂. Cameroon: Bamenda, 5000', 25–31.i.1957, yellow pan trap (Eastop) (BMNH); slide-mounted.

Paratype. 1 ♀, same locality as holotype, 20–24.i.1957 (BMNH); slide-mounted.

Comments. This species is differentiated from others in the genus by the shape, pattern and venation of the forewing, and the structure of the antenna and the male proctiger. It is probably the sister-species of H. chlamydomora.

Oriental Region

Homotoma altissimae (Yang & Li)

Caenohomotoma altissimae Yang & Li, 1984a: 206, 217. Holotype ♂. CHINA: on Ficus altissima (BAUIC) [not examined].

Homotoma altissimae (Yang & Li) Hodkinson, 1986: 312.

Hostplant. Ficus altissima; (Urostigma) sect. Conosyceae).
Homotoma anneslea (Yang & Li)

Caenohomotoma anneslea Yang & Li, 1984a: 205, 217. Holotype ♂. CHINA: on *Anneslea fragrans* (BAUIC) [not examined].

Hostplant. Two adults recorded from *Anneslea fragrans* (Theaceae). These specimens were probably vagrants.

Recorded distribution. China (Yunnan). No material examined.

Homotoma bambusae (Yang & Li)

Caenohomotoma (Heterhomotoma) *bambusae* Yang & Li, 1981: 82, 85, 86; 1984a: 210. Holotype ♂. CHINA: on *Bambusa* sp. (BAUIC) [not examined].

Caenohomotoma bambusae Yang & Li, 1984a: 216, 218.

Hostplant. Two adults collected from *Bambusa* sp. (Gramineae). These specimens were probably vagrants.

Recorded distribution. China (Hainan). No material examined.

Homotoma benjaminae (Yang & Li)

Caenohomotoma *benjaminae* Yang & Li, 1984a: 211, 217. Holotype ♂. CHINA: on *Ficus benjamina* (BAUIC) [not examined].

Hostplant. Three adults collected from *Ficus benjamina*: ((Urostigma) sect. Conosycea).

Recorded distribution. China (Lincang Prov.). No material examined.

Homotoma boheae Yu

(Fig. 71)

Hostplant. Unknown.

Homotoma chuanana (Yang & Li)

Caenohomotoma (Psausia) chuanana Yang & Li, 1981: 81, 86. Holotype ♀. CHINA (BAUIC) [not examined].

Hostplant. Unknown.

Recorded distribution. China (Yunnan). No material examined.

Homotoma distincta Crawford

Homotoma distincta Crawford, 1912: 433; 1919: 162; Ramakrishna Ayyar. 1924: 622; Boselli, 1929: 219; Miyatake, 1975: 21; Hodkinson, 1986: 313. Holotype ♀. INDIA (BMNH) [examined].

Caenohomotoma (Harrisonella) distincta (Crawford) Yang & Li, 1981: 78, 85.

Hostplant. *Ficus religiosa* (Heslop-Harrison, 1949); ((Urostigma) sect. Urostigma).

Recorded distribution. India (Bihar, U. P.).

Material examined

India (Bihar, U. P.): holotype ♀, 1 ♂ (BMNH).

Homotoma galbvittata (Yang & Li)

Caenohomotoma galbvittata Yang & Li, 1984a: 203, 217. Holotype ♂. CHINA: on *Ficus sp.* (BAUIC) [not examined].

Hostplant. *Ficus sp.*

Recorded distribution. China (Yunnan). No material examined.

Homotoma indica (Mathur)

Psausia indica Mathur, 1975: 158. Holotype ♂. INDIA: on *Ficus infectoria* (FRI) [not examined].
Caenohomotoma indica (Mathur) Yang & Li, 1984a: 218.

HOSTPLANTS. There is some confusion in the original description concerning the identity of the host. Under hostplant data Mathur states ‘Ficus macrocarpa (=F. retusa) and F. lucenscens (=F. infectoria)’. Under type data only Ficus infectoria is given, and under biological notes Mathur states ‘Both adults and nymphs are commonly found on young shoots of F. macrocarpa at...Dehra Dun’. Ficus macrocarpa (=F. retusa) is probably a misspelling of F. micocarpa (see Corner, 1965: 22), although it may refer to F. laevis var. macrocarpa (Corner, 1965: 53). F. infectoria may refer to either F. tsjala or F. virens (Corner, 1965: 7 and 9 respectively).

RECORDED DISTRIBUTION. India (UP). No material examined.

Homotoma lahui (Yang & Li)
Caenohomotoma lahui Yang & Li, 1984a: 212, 217. Holotype ♀, CHINA (BAUIC) [not examined].
Homotoma lahui (Yang & Li) Hodkinson. 1986: 313.
HOSTPLANT. Unknown.
RECORDED DISTRIBUTION. China (Yunnan). No material examined.

Homotoma maculata Yang
Psausia maculata Yang, 1984: 173. Holotype ♂, TAIWAN: on Ficus beechyana (NCHU) [not examined].
HOSTPLANT. Ficus erecta var. beechyana; ((Ficus) sect. Ficus).
RECORDED DISTRIBUTION. Taiwan. No material examined.

Homotoma mangiferae (Yang & Li)
Caenohomotoma mangiferae Yang & Li, 1984a: 209, 217. Holotype ♂, CHINA: on Mangifera indica (BAUIC) [not examined].
HOSTPLANT. The single known adult, recorded from Mangifera indica, was probably a vagrant.

RECORDED DISTRIBUTION. China (Yunnan). No material examined.

Homotoma pyriformiscola (Yang & Li)
Caenohomotoma pyriformiscola Yang & Li, 1984a: 207, 217. Holotype ♂, CHINA: on Ficus pyriformis (BAUIC) [not examined].
HOSTPLANT. Ficus pyriformis; ((Ficus) sect. Ficus).
RECORDED DISTRIBUTION. China (Yunnan). No material examined.

Homotoma radiata Kuwayama
(Fig. 72)
Psausia (Homotoma) radiata (Kuwayama) Kuwayama, 1922: 368.
HOSTPLANTS. Recorded from Ficus erecta, F. caulocarpa, F. superba var. japonica and Ficus sp.
RECORDED DISTRIBUTION. Nepal, Taiwan, Japan and Hong Kong.
MATERIAL EXAMINED.
Hong Kong: adults on Ficus superba var. japonica (BMNH).

Homotoma ruiliana (Yang & Li)
Caenohomotoma ruiliana Yang & Li, 1984a: 214, 217. Holotype ♂, CHINA: on Ficus sp. (BAUIC) [not examined].
HOSTPLANT. A single male collected from Ficus sp.
RECORDED DISTRIBUTION. China (Yunnan). No material examined.
Homotoma shuana (Yang & Li)

Caenohomotoma shuana Yang & Li; Yang & Li, 1984a: 216, 218.

Hostplant. Unknown.

Recorded distribution. China (Sichuan).
No material examined.

Homotoma spiraea (Yang & Li)

Caenohomotoma (Caenohomotoma) spiraea Yang & Li, 1981: 79, 85, 86; 1984a: 216, 218. Holotype ♂, CHINA: on 'Spirae' sp. (BAUIC) [not examined].

Homotoma spiraea (Yang & Li) Hodkinson, 1986: 314. [Misspelling.]

Hostplant. Described from 12 adults collected on 'Spirae' sp. [? Spiraea sp.].

Recorded distribution. China (Zhejiang).
No material examined.

Homotoma unifasciata Yu

Caenohomotoma (Caenohomotoma) unifasciata (Yu) Yang & Li, 1981: 78, 85.
Caenohomotoma unifasciata (Yu); Yang & Li, 1984a: 216, 218.

Hostplant. Unknown.

Recorded distribution. China (Fukien); Japan.
No material examined.

Homotoma wulinensis (Yang)

Psausia wulinensis Yang, 1984: 170. Holotype ♂, TAIWAN: on Ficus sarmentosa (NCHU) [not examined].

Hostplant. Ficus sarmentosa; ((Ficus) sect. Rhizocladus).

Recorded distribution. Taiwan.
No material examined.

Homotoma xishuangana (Yang & Li)

Caenohomotoma xishuangana Yang & Li, 1984a: 213, 217. Holotype ♂, CHINA: on Ficus sp. (BAUIC) [not examined].

Hostplant. Described from four adults collected on Ficus sp.

Recorded distribution. China (Yunnan).
No material examined.

Homotoma yunnanica (Yang & Li)

Caenohomotoma yunnanica Yang & Li, 1984a: 210, 217. Holotype ♂, CHINA: on Ficus sp. (BAUIC) [not examined].

Hostplant. Described from nine adults collected on Ficus sp.

Recorded distribution. China (Yunnan).
No material examined.

Australo-oriental Region

Homotoma bakeri Crawford

Fig. 73)

Metapsausia bakeri (Crawford) Enderlein, 1921: 120.

Caenohomotoma (Metapsausia) bakeri (Crawford) Yang & Li, 1981: 78, 85.

Caenohomotoma bakeri (Crawford) Yang & Li, 1984a: 218.

Hostplant. Ficus benjamina var. nuda (= F. comosa; recorded as F. cariosa by Braza & Calilung); ((Urostigma) sect. Conosycea).

Recorded distribution. Philippines (Luzon and Mindanao); West Malaysia (Penang).

Material examined

Philippines: ♂, ♀ and larvae, Mt Makiling. West Malaysia: 1 ♀, Pahang (BMNH).

Homotoma bilineata Crawford

Holotype ♂, PHILIPPINES (USNM) [examined].
Metapsausia bilineata (Crawford) Enderlein, 1921: 120.
Homotoma biliniata Crawford; Heslop-Harrison, 1949: 376. [Misspelling.]
Caenohomotoma (Metapsausia) bilineata (Crawford) Yang & Li, 1981: 78, 85.
Caenohomotoma bilineata (Crawford) Yang & Li, 1984a: 218.
HOSTPLANT. Ficus sp. (1 ♀, BMNH).
RECORDED DISTRIBUTION. Philippines (Luzon); Thailand.

MATERIAL EXAMINED
Philippines: 1 ♂ (holotype), Luzon (USNM); 1 ♀, Palawan (BMNH).

COMMENTS. Hodkinson’s (1983, 1986) records of H. bilineata from Sarawak refer to a closely related species, of which there are further specimens in BMNH from Sulawesi and Seram.

Homotoma gressitti Miyatake

Homotoma gressitti Miyatake, 1975: 17; Hodkinson, 1983: 349. Holotype ♀, PAPUA NEW GUINEA (BPBM) [not examined].
Caenohomotoma (Austrohomotoma) gressitti (Miyatake) Yang & Li, 1981: 78, 85.
Caenohomotoma gressitti (Miyatake) Yang & Li, 1984a: 218.

HOSTPLANT. Unknown.
RECORDED DISTRIBUTION. Papua New Guinea.

MATERIAL EXAMINED
A series of adults from PAPUA NEW GUINEA (Mondo), in BMNH, differ from the original description slightly in forewing venation and pattern.

Homotoma pacifica Crawford

(Fig. 64)

HOSTPLANT. Unknown.
RECORDED DISTRIBUTION. Philippines (Luzon).

Material examined
Philippines: 1 ♂ (holotype) (USNM). Indonesia: 1 ♀, Sulawesi Utara (BMNH).

COMMENTS. A single ♀ of a closely related but undescribed species (Fig. 65) is in BMNH, also from Sulawesi Utara.

SYNOZINI Bekker-Migdisova

Synoziini White & Hodkinson, 1985: 162. [Misspelling.]

Diagnosis. In forewing M+Cu stem absent, M stem completely fused along its basal two-thirds with Rs, radular area absent from cell m; hind tibia with an almost complete ring of apical spurs; ♂ proctiger unipartite; basal segment of aedeagus not expanded, apical segment with a pair of subapical spiniform processes ventrally.

A single, New World genus, Synoza, is included here. It comprises three species from Central and South America and recorded hostplants are Ficus spp.

SYNOZA Enderlein

Description. Medium-sized psyllids, up to 5.0 mm. Integument of head and thorax sparsely covered with long setae. Head (Figs 25, 26), from above, about as wide as mesoscutum; vertex concave on either side of median suture, anterior and lateral margins rounded, occipital margin angu- medially but rounded laterally, anterior margin deeply incised by median suture, lateral ocelli on raised tubercles, anterolateral tubercles absent; antennal bases enlarged, giving head a cleft appearance, flagellum about 4 times longer than head width, flagellomeres cylindrical, a single subapical rhinarium present on flagellomeres 2, 4, 6 and 7; genae not swollen ventrally; ultimate rostral segment short, less than 2.5 times longer than wide.

Thorax, in profile, strongly arched, pronotum very narrowly visible from above and descending
sharply behind occiput. Forewing (Fig. 74) obovate, with rounded apex, about 2.5 times longer than wide, veins bearing long setae, C+Sc not thickened, costal break indicated by weakening of chitin in break area, basal two-thirds of M stem completely fused with Rs, apex of M₁+₂ reaching wing margin anterior to wing apex, M+Cu absent, m₁ cell value about 1.0, cu₁ cell value about 1.0, radial areas sharply defined but absent from cell m₂, apex of claval suture distant from apex of Cu₂₃; basal spine of hind tibia absent, apical spur ring almost complete; hind basitasurus with 2 apical spurs.

♀ proctiger unipartite, with well-developed lateral lobes that do not bear inner apical lobes; basal segment of aedeagus not expanded in apical half, apical lobes of aedeagus with a pair of spiniform lobes ventrally (Fig. 105).

♀ terminalia conical or elongate conical; circum-ansa pore ring simple.

 Larva. Body longer than wide; antenna long, filiform, but not subdivided; wing pads small, humeral lobes not developed; body surface membrane with thoracic sclerites not defined, setae mainly simple but abdominal segments bearing small groups of 1–3 pointed setae except submarginally on dorsal surface, dorsal caudal plate (Fig. 113) small, bearing groups of pointed setae consisting of a anus ventral (Fig. 113), with a large, medially constricted circum-ansa pore ring; tarsal arculum triangular, not petiolate.

Comments. Laing (1923) and Ferris (1928) placed Synoza in the Carsidaridae sensu Crawford (1919); Bekker-Migdisova (1973: fig. 2) considered the genus to be the sister-group of the rest of the homotomids, and White & Hodkinson (1985) regarded it as the sister-group of Homotoma.

The three included species are discussed and differentiated by Brown & Hodkinson (1988).

Synoza cornutiventris Enderlein
(Figs 25, 26, 74, 105)

Hostplant. *Ficus* sp. (Brown & Hodkinson, 1988).

Recorded distribution. Colombia, Panama and Peru.

Material examined

- **Colombia**: 1 ♂, 1 ♀, on *Ficus* sp.; **Panama**: 3 ♀ (BMNH).

Synoza floccosa Ferris
(Fig. 113)

Hostplant. *Ficus* sp.

Recorded distribution. Mexico.

Material examined

Mexico: adults and larvae on *Ficus* sp. (syntype series. SUNHM).

Synoza pulchar Laing

Hostplant. Unknown.

Recorded distribution. Mexico, Panama.

Material examined

Mexico: 1 ♂ (holotype); **Panama**: 1 ♂ (BMNH).

REFERENCES

Tryon, H. 1895. Three undescribed insects whose food-plant is the Moreton Bay Fig and the injuries which they occasion. Transactions of the Natural History Society of Queensland 1: 60–63.

Figs 2–11 Dynopsyllinae, head structure. 2, 3, *Diceraopsylla brunettii*; 2, dorsal view; 3, lateral view. 4, 5, *Dynopsylla cornuta*; 4, dorsal view; 5, lateral view. 6, 7, *Austrodynopsylla encala*; 6, dorsal view; 7, lateral view. 8, 9, *Trizamia lamborni*; 8, dorsal view; 9, lateral view. 10, 11, *Afrodynopsylla gigantea*; 10, dorsal view; 11, lateral view.

Scale line: 0.5 mm. Setosity not shown in Figs 2, 3, 6–9.
Figs 12–26 Macrohomotominae and Homotominae, head structure. 12, 13, *Mycopsylla gardenensis*; 12, dorsal view; 13, lateral view. 14, 15, *M. tuberculata*; 14, dorsal view; 15, lateral view. 16, 17, *M. obliqua*; 16, dorsal view; 17, lateral view. 18, 19, *Macrohomotoma gladiata*; 18, dorsal view; 19, lateral view. 20, 21, *Pseudoerioipsylla laingi*; 20, dorsal view; 21, lateral view. 22, 23, *Homotoma angolensis*; 22, dorsal view; 23, lateral view. 24, 25, 26, *Synoza cornuavensis*; 25, dorsal view; 26, lateral view. Scale lines: 0.5 mm. Setosity not shown in Figs 12–21. Fig. 24 drawn from slide-mounted specimen.
Figs 27–40 Homotomidae, antennal structure. 27, Austrodynopsylla encala, 1st and 2nd flagellomeres. 28, Triozania lamborni, 1st and 2nd flagellomeres. 29, Afrodynopsylla gigantea, 1st flagellomere. 30, Mycopsylla kina, 1st flagellomere. 31, M. obliqua, flagellum. 32, Pseudoeriopsylla nyasae, 1st and 2nd flagellomeres. 33, P. laingi, 1st and 2nd flagellomeres. 34, P. medleri, 1st and 2nd flagellomeres. 35, P. carvalhoi, 1st and flagellomeres. 36, P. kenyae, 1st and 2nd flagellomeres. 37, P. etiennei, 1st and 2nd flagellomeres. 38, Homotoma bamendae, antenna. 39, H. angolensis, antenna. 40, H. eastopi, antenna. Scale lines: Figs 27–30, 0.2 mm; Figs 31, 38–40, 0.5 mm; Figs 32–37, 0.1 mm.
Figs 41–46 Homotomidae, thoracic, leg and abdominal structure. 41, *Dynopsylla cornua*, thorax, lateral view. 42, *Afrodynopsylla gigantea*, thorax, lateral view. 43, *Australodynopsylla encala*, apex of hind tibia. 44, *Triozamia lamborni*, apex of hind tibia. 45, 46, *Diceropsylla brunettii*; 45, apex of hind tibia; 46, abdominal wax-producing glands. Scale lines: Figs 41, 42, 0.5 mm; Figs 43–46, 0.1 mm. Figs 41, 42, drawn from dry-mounted specimens.
Figs 57-74 Macrohomotominae and Homotominae, forewings. 57, Mycopsylla gardenensis. 58, M. obliqua. 59, M. propinqua. 60, Macrohomotoma gladiata. 61, Pseudoeriopsylla laingi. 62, P. etiennei. 63, Homotoma angolensis. 64, H. pacifica. 65, Homotoma sp., near pacifica. 66, H. ficus. 67, H. bamendae. 68, 69, H. chlamydodora; 68, specimen from Burundi; 69, specimen from Tanzania. 70, H. eastopi. 71, H. boheae. 72, H. radiata. 73, H. bakeri. 74, Synoza cornutiventris. Scale lines: 0.5 mm. Setosity not shown in Figs 57-62.
Figs 75–83 Dynopsyllinae, male genitalia. 75. *Diceraopsylla brunetti*, external genitalia, lateral view. 76, 77, *Dynopsylla pinnativena*; 76, paramere; 77, apical segment of aedeagus, lateral view. 78, 79, *Australodynopsylla encala*; 78, paramere; 79, apical segment of aedeagus, lateral view. 80, 81, *Triozamia lamborni*; 80, paramere; 81, apical segments of aedeagus, lateral view. 82, 83, *Afrodynopsylla gigantea*; 82, paramere; 83, apical segments of aedeagus. lateral view. Scale lines: 0.1 mm.
Figs 84–91 Edenini, male and female genitalia. 84, Mycopsylla kina, male external genitalia, lateral view. 85, 86, My. tuberculata; 85, male external genitalia, lateral view; 86, female external genitalia, lateral view. 87–89, My. obliqua; 87, male proctiger and aedeagus, lateral view; 88, paramere; 89, female external genitalia, lateral view. 90, 91, My. propinqu a; 90, male proctiger and aedeagus, lateral view; 91, paramere. Scale lines: Figs 86, 89, 0.2 mm; remainder 0.1 mm.
Invalid names are in *italics*

Laevis var. macrocarpa 163
lucescens 163
macaropa 133, 163
macrophylla 133, 149
microcarpa 133, 136, 148, 149, 152, 153, 163
microphylla 153
minahassae 137
mollis 136, 148, 149
mutandifolia 160
natalensis 136, 154, 155, 161
cavosa 133, 137, 143, 144
nota 137
obliqua 136, 151
odorata 137
ovata 136, 156
peterson 154, 161
pumila 137
pyriformis 137, 163
tacemosa 137
religiosa 136, 148, 149, 162
repandifolia 136
rutha 136, 152, 153, 163
roxburgii 137
rugibonosa 136, 149
rumphi 133, 136
sarmontosa 137, 164
scassellati 154
sp. 133, 139, 142, 145, 149, 152, 153, 154, 155, 156, 162, 163, 164, 165, 166
spp. 133, 137, 139, 153, 163
stipulata 137
superba 136
var. japonica 163
sur 137
sycomorus 137
thonnongi 136, 154, 155, 160, 161
tintoria 137
tomentosa 136
tsajhel 136, 148, 149, 163
ulmifolia 137
variegata 137
viens 136, 148, 149, 163
Ficus (sect.) 135, 137, 139, 157, 159, 163
Ficus (subgen.) 133, 135, 137, 159, 163, 164
Ficus (subsect.) 137
Flacourtiaeaae 132
Galoglychia (sect.) 135, 136, 138, 139, 147, 154, 156, 157, 160, 161
Hispidae (subser.) 137
Indicac (subser.) 136
Lauraceae 133
Leucocyn (sect.) 136, 138
Malvacceae 133
Malvales 133, 139
Malvancha (sect.) 135, 136, 138, 139, 147, 148, 150
Malvaneacae (series) 136
Malvaneacae (subser.) 136
Mangifera indica 163
Melastomaceae 133
Milletia 133, 134
Moraceae 131, 132, 133, 138
Morus 133, 134
Necomorphae (sect.) 137
Nerovacaeae (series) 137
Ocotea 133
Oreospycaceae (sect.) 137, 138, 139, 142, 143
Orthoneuracaeae (series) 136
Palacomorpha (subsect.) 137
Pallidaceae 137
Phaecoasilosaceae 137
Pharamacosycaeaae (sect.) 138
Pharamacosycaeaae (subgen.) 133, 137
Plagioestigmaticaeae (series) 137
Plagioestigmaticaeae (subser.) 137
Phytopdocaeae (subser.) 136
Podosycaceaeae (series) 137
Podosycaceaeae (subser.) 137
Psidium guajava 148, 149
Pungentes (series) 137
Religiosacaeae (series) 136
Rhizocladusaeae (sect.) 135, 137, 139, 157, 164
Rubiacceaeae 132
Rutaceaeaae 133
Santalum album 149, 152
Scabracaeae 137
Sideroxylon 133
Spirae 164
Spiraeae 164
Sterculiacceaeae 133
Stilpinophyllumaeae (sect.) 135, 136, 138, 139, 142
Superbaeaeae (series) 136
Sycidiumaeae (sect.) 133, 137
Sycidiumaeae (subsect.) 137
Sycoacarpusaeae (sect.) 137
Sycoacarpusaeae (subsect.) 137
Sycomoracaeae (sect.) 137, 138
Sycomoracaeae (subgen.) 133, 137, 138
Theaceaeae 162
Theales 133
Tiliacaceaeae 133
Tuberculifasciculataaeae (series) 137
Tuberculifasciculataaeae (subser.) 137
Ulmaceaeae 132
Urostigmaaeae (sect.) 135, 136, 138, 139, 147, 148, 157, 161, 162
Urostigmaaeae (subgen.) 133, 135, 136, 160, 161, 162, 164
Urticaceaeae 131
Variegataeaeae (series) 137
Variegataeaeae (subser.) 137
Varingaeaeae (subsect.) 137
INDEX

Invalid names are in italics; principal references are in bold.

Afrodynopsylla 135, 138, 139, 141 (key), 145, 146
Agaonidae 132
Agaoninae 132
altissimae (Caenohomotoma) 161
altissimae (Homotoma) 136, 161
angolensis 136, 159
Anisostropha 157
annesleae (Caenohomotoma) 162
annesleae (Homotoma) 162
Anomoneura 133, 134
Anomoneurinae 134
Aphalaridae 135, 142
Aphalarinae 133, 134
apsylloides (Macrohomotoma) 152
apsylloides (Pauropsylla) 152, 153
Australohomotoma 157
Austrodynopsylla 135, 138, 139, 141 (key), 142, 143, 144
Austrohomotoma 157
bakeri (Caenohomotoma) 164
bakeri (Caenohomotoma (Metapsylla) 164
bakeri (Homotoma) 136, 157, 164
bakeri (Metapsylla) 164
bambusae (Caenohomotoma) 162
bambusae (Homotoma (Heterohomotoma)) 162
bambusae (Homotoma) 162
bamnecdae 160, 161
benjaminae (Caenohomotoma) 162
benjaminae (Homotoma) 136, 162
bilincata (Caenohomotoma) 165
bilincata (Caenohomotoma (Metapsylla)) 165
bilincata (Homotoma) 137, 164
bilincata (Metapsylla) 165
bilinista 165
boheae (Caenohomotoma (Caenohomotoma)) 162
boheae (Homotoma) 162
brevigena 133
brunetti 136, 142
bustoni 133, 137
Caenohomotoma 157
Carsidaridae 135, 138, 140, 166
Carsidarinae 135, 156
Carpenteri 135, 142
carvalhio 136, 154 (key), 155, 156
Ceropsylla 133, 134
Chalcidoidea 155
Charipidae 155
chlamydomora 136, 160, 161
chuanana (Caenohomotoma) 162
chuanana (Caenohomotoma (Psylla)) 162
chuanana (Homotoma) 162
Ciriacreminae 135, 142
conchaensis 137
cornuta 137, 143, 144 (key)
cornutiventris 137, 165, 166
Crawfordella 135, 143
Cynipoidea 155
Danainae 132
deflexa 137
depressa 137
Diceramosylla 142
Diceropsylla 134, 135, 138, 139, 141 (key), 142
Diceropsyllini 138, 141 (key), 142
Dieropsylla 137, 144 (key), 142
diaptomus (Macrohomotoma) 152
diaptomus (Pauropsylla) 152, 153
Euploea 133, 134, 135, 138, 139, 141 (key), 142, 143, 145
Dynopsylla 134
Dynopsylla 133, 134, 135, 138, 139, 141 (key), 142, 143, 145
Dynopsyllina 134, 141 (key), 143, 145
Dynopsyllinae 134, 135, 138, 141, 146, 147
Dynopsyllini 138, 141 (key), 142, 143, 148, 157
eastopi 161
Edenii 138, 141 (key), 147
Edus 147, 148
cenca 137, 144, 145
Encyrtidae 155
Epipsylla 133
ettenjii 137, 154 (key), 156
Euopidae 132
Euopola 132
Eurytomidae 132
feci (Mycopsylla) 136, 148, 149, 150
feci (Psylla) 148, 149
feci species-group 148, 150
ficicola (Psylla) 133, 136, 137
ficicola (Triozoa) 133
ficus (Anisostropha) 159
ficus (Chermes) 157, 159
ficus (Homotoma) 137, 158, 159, 160
ficus (Psylla) 157, 159
fima species-group 132
floccosa 137, 166
fulvida 133, 136
geissitti (Caenohomotoma) 165
gressitti (Caenohomotoma) (Austrohomotoma) 165
gressitti (Homotoma) 157, 165
Haplapalara 133
Harrisonella 157
Heterohomotoma 157
Homotoma 134, 135, 138, 139, 141 (key), 157, 158 (key), 166
Homotomidae 132, 134, 135, 138, 140, 146, 147
Homotominae 134, 135, 138, 141 (key), 147, 156
Homotominii 135, 138, 140, 141 (key), 147, 156, 157
hylilocola 137, 152
indica (Caenohomotoma) 163
indica (Homotoma) 136, 158, 162, 163
indica (Mycopsylla) 149
indica (Psylla) 162
kenyae 137, 154 (key), 156
kina 137, 148, 149
Labobrachia 157
Labobrachia 135, 157, 158 (key)
lahai (Caenohomotoma) 163
lahai (Homotoma) 163
laingi 136, 154 (key), 155
lamborni (Rhinopsylla) 145, 146
lamborni (Triozamia) 133, 146
lambourni 146
Limenitidinae 132
Liosocephala 132
Macrohomotoma 134, 135, 138, 139, 141 (key), 147, 151, 153, 154
Macrohomotominiae 134, 138, 141 (key).
147
Macrohomotomini 138, 141 (key), 151
maculata (Homotoma) 137, 158, 163
maculata (Macrohomotoma) 152
maculata (Psylla) 163
magi 137, 152
magn 152
mangiferaceae (Caenohomotoma) 163
mangiferaceae (Homotoma) 163
Marxeninae 132
mathuriana 136, 149
medlerii 154 (key), 155
Metapsylla 135, 157, 158 (key)
millana 137, 152
Mycopsylla 134, 135, 138, 139, 141 (key), 147, 148
Mycopsylla 148
Neolitthus 146
nyasae (Macrohomotoma) 154
nyasae (Psodocopsylla) 136, 153, 154 (key), 155
Nymphalidae 132
obliqua 136, 148, 150
obliqua species-group 150
Ormyridae 132

pacifica (Homotoma) 157, 165
pacifica (Labobrachia) 165
Paurocephala 133, 134
Paurocephalinae 134
Pauropsylla 133, 134
Phacopteronidae 138
Phacopteronini 135, 147
Phytolyama 133, 134

pinnativena (Dynopsylla) 137, 143, 144 (key)

pinnativena (Dynopsylla (Sphingocladia)) 144
pinnativena (Sphingocladia) 143, 144
propinqua 151
proxima (Myecopsylla) 136, 148, 149, 150
proxima (Pauropsylla) 136
Psaisini 157
Pseudopsylla 153
Pseudopsyllus 134, 135, 138, 139, 141 (key), 147, 151, 153, 154
Pseudoneoptis 132
Psyllaeaphagus 155
Psyllidae 134
Psylloidea 132, 134, 135
psylloptera 137
Pteromalidae 132

pulchra 166
pulchra 166
pumilac 137

purpureus 137
pyriformiscopa (Caenohomotoma) 163
pyriformiscopa (Homotoma) 137, 163
radiata (Caenohomotoma) 163
radiata (Homotoma) 136, 137, 157, 158, 163
radiata (Psaisia) 163
radiata (Psaisia (Homotoma)) 163
radiatum 163
robusta 136, 153
ruliana (Caenohomotoma) 163
ruliana (Homotoma) 137, 163

sandakana 153
secus 155
shuana (Caenohomotoma) 164
shuana (Caenohomotoma (Hetero-

homotoma)) 164
shuana (Homotoma) 164
sinca 136, 153
Sphingocladia 135, 143

spirac 164
spiraca (Caenohomotoma) 157
spiraca (Caenohomotoma (Caen-

homotoma)) 164
spiraca (Homotoma) 164
stevensi (Diceraopsylla) 142
stevensi (Dieccaopsylla) 142
stevensi (Pauropsylla) 142
striata 136, 137, 152, 153
Synoza 134, 135, 138, 139, 140, 141 (key), 158, 165, 166
Synozini 165

ypnana 137, 153
ypnana (Caenohomotoma) 164
ypnana (Homotoma) 137, 164

trichaeta 137
Troza 133, 134
Troziaria 133, 134, 135, 138, 139, 141 (key), 142, 145
Troziamina 138, 141 (key), 143, 145, 146
Troziaminae 145
Troziaini 145
Troziidae 134, 135, 146
triozoptera 137
tuberculata 150

udei 137
unfasciata (Caenohomotoma) 164
unfasciata (Caenohomotoma (Caen-

homotoma)) 164
unfasciata (Homotoma) 164
usambARENSIS 133, 146

viridis (Homotoma) 137, 159
viridis (Macrohomotoma) 137, 153
vondraceki 133, 146

willcocksi 137
williamsi 136, 153
wulinensis (Homotoma) 137, 158, 164
wulinensis (Psaisia) 164

xishuangana (Caenohomotoma) 164
xishuangana (Homotoma) 137, 164

yunana 137, 153
yunnana (Caenohomotoma) 164
The species of Poecilominettia, Homoeominettia and Floriminettia (Diptera: Lauxaniidae) in Panama

ELCY C. BROADHEAD
Department of Pure and Applied Biology, University of Leeds, Leeds LS2 9JT

CONTENTS

Introduction ... 185
Bionomics .. 186
Material .. 187
Taxonomic characters 187
Generic evaluations 187
Key to the genera Poecilominettia, Floriminettia and Homoeominettia 188
Floriminettia gen. n. 189
Homoeominettia gen. n. 190
Poecilominettia Hendel 190
References .. 210
Index ... 226

SYNOPSIS. Fifty-four species and 2 genera obtained by light-trapping and by fogging the high canopy in forests of the Panama region are newly described. Fifty-one of these species belong to the genus Poecilominettia. The character of the labellum is used for the first time in taxonomic study and has proved useful in generic delineation. Species of Floriminettia are not fungal grazers, but those of Poecilominettia and Homoeominettia are. Analysis of the gut content indicates that 43 species living on the island of Barro Colorado form a large guild feeding upon phylloplane fungi. Of these a group of 29 very closely related and hitherto undescribed species are separated by examination of the male genitalia. It is suggested that there may be a mutualistic association of lauxaniid flies with the trees. Keys to the genera and species of Poecilominettia, Homoeominettia and Floriminettia are provided.

INTRODUCTION

In Panama, flies of the family Lauxaniidae are found, often in large numbers, in forest areas where they have a close relationship with the trees. Adults of a great many species in various genera have a much modified labellum, enabling them to feed upon phylloplane fungi (Broadhead, 1984), while their larvae live mainly as miners of fallen leaves. Of these genera, Pseudogriphoneura, Sapromyza, Xenochaetina, and Poecilominettia in particular were found to be represented by many undescribed and very closely related species. This study is, however, limited mainly to those of the last-named genus. An interesting taxonomic problem was presented on the island of Barro Colorado where a swarm of very closely related species, hitherto undescribed, belonging to the genus Poecilominettia was discovered. An investigation of this prompted a study of other material available to me from various Panamanian sites. This paper comprises descriptions of all the new species together with a key to three genera encountered in the Panama region, as well as keys to the species.

The family Lauxaniidae at present consists of 126 genera, few of which are worldwide in their distribution. Major contributions to the taxonomic background of this family were made by
Malloch and Hendel working independently in the 1920s and 30s, by Curran somewhat later on Central American species, by Shewell on North American species, and more recently by Stuckenberg in his valuable monograph of the Old World genera.

Stuckenberg (1971) pointed out that useful characters for defining genera had not been forthcoming and recommended that further studies should be done on the post-abdomen. This applies especially to *Minetta*, a genus worldwide in its distribution, which Stuckenberg regarded as probably not a monophyletic group but rather an aggregation of species having in common an intralocular bristle. The genus *Poecilominettia* was created by Hendel (1932) for certain Central American species which differed from those of *Minetta* in respect of the position of the anterior frontal and of the ocellar bristles, the type species being *picticornis*. His definition of the genus *Minetta* was later clarified by Collin (1948), who worked on the British Lauxaniidae, and by Stuckenberg (1971).

In the present paper a contribution towards further delineation of both *Poecilominettia* and *Minetta* is offered, and as a result of these evaluations certain species are removed and placed in a new genus, *Floriminettia*. A second new genus, *Homoeominettia*, is erected to accommodate three species, two of which were originally described by Malloch (1926) in *Minetta*. Subsequently (1928) he placed all three in *Deutominettia*, in spite of the fact that they did not possess the hair scutellar disc characteristic of that genus, but retained them in his key to the species of *Minetta* (1928). Flies of the genus *Minetta* s.str. were not represented in the collections studied here. In the key to genera, *Minetta* s.str. is therefore not included.

The taxonomic characters used in this study are based on the male genitalia and the labellum, along with the hairing of the arista and body marking. The large fleshy labellum of the Lauxaniidae has not hitherto been used for taxonomic differentiation. The evolution of the structures on the borders of the pseudo-tracheal canals, along with the increase in diameter of the canals resulting in a reduction of their numbers, has enabled the flies to crop and ingest solid food particles of fungal matter. Such feeding habits are quite unusual in adult Diptera.

The labellum of unique specimens was not removed but, since the flies were preserved in alcohol, this was gently opened out and the main outlines of its morphology readily observed (Fig. 13D). The gut content was not removed in these cases either, but the presence of fungal material was easily recognised by the very dark gut showing through the yellow integument.

BIONOMICS

Microscopic examination of the pseudo-tracheal canals and of the gut content of all the species described here, as well as *picticornis* and *zebroides*, but with the exception of those species represented by a single individual, revealed that the food consisted of short lengths of fungal hyphae and fungal spores and was virtually indistinguishable from one species to another.

On the island of Barro Colorado, with an area of 23 square kilometres, at least 43 species of the genus *Poecilominettia* co-exist, all of which are known to feed upon the same material, namely phylloplane fungi. Within that group there are 29 species particularly closely related, which are difficult to separate except by examination of the male genitalia, the structures of which are remarkably varied. Particles of food found in the pseudo-tracheal canals of the labellum and within the gut are virtually indistinguishable from species to species and consist of short lengths of fungal hyphae and fungal spores. Such species diversity cannot therefore be accounted for in terms of selective pressures operating on food requirements. Broadhead (1983) found a similar situation in Psocoptera collected in Panama. Curiously enough the diet of the psocids and that of the lauxaniid flies are almost identical. Mound (1977) also found species swarms in fungal-feeding thrips (Phlaeothripinae) in one site in southern Brazil. These insects were feeding upon fungal hyphae associated with leaf decay on the forest floor.

There is considerable interest among ecologists at the present time in guilds of species. Shorrock & Rosewell (1986), working on *Drosophila*, have concluded that, in laboratory conditions, guild-size centres on an average of seven species, but in the wild, such a guild would be two or three times that size. The *Drosophila* species are of course utilising various ephemeral resources, in contrast to the lauxaniids which are feeding on self-regenerating food material that is uniformly dispersed in space and time. The many species of lauxaniid flies in the various genera present in the rain forest of Barro Colorado Island would form an enormous guild of size far greater than 21.

A large number of individuals of a hitherto undescribed species of *Drosophila* found in the light-trap samples from Barro Colorado Island appear to have joined the lauxaniid guild, for the
adults have a labellum modified for fungal grazing and indeed the gut, on microscopical examination, was found to be packed with short lengths of fungal hyphae of the type found in the gut of the lauxaniids.

Flies of the family Lauxaniidae are not regarded as being of any economic importance. In fact it would seem that they are behaving in a way beneficial to the trees, by removing fungal hyphae that reduce the amount of light penetrating the leaf tissue - hyphae that might also facilitate the introduction of plant diseases. There may well be here the development of a mutualistic situation. Although the larval habits of the species under consideration here are not known, it is generally accepted that the majority of larvae do develop within the tissues of fallen leaves. I have bred various species of British lauxaniids from leaf mould in my garden. Odum (1963) thought that several types of mutualism originate from neutralistic associations.

MATERIAL

Material for this study was obtained in Panama in several ways, namely, from pyrethrum fogging (July–August 1979) of the high canopy of forests in the Canal area, from light traps at Fortuna (mountain valley). Miramar (coastal valley), and Barro Colorado Island (1976–83), as well as from hand collecting.

In addition, a large collection of Lauxaniidae from Central America, many not determined, was made available for examination when the United States National Museum in Washington kindly sent me their specimens on a long term loan.

Type specimens and other material are deposited in the British Museum (Natural History), abbreviated to BMNH, or in the National Museum of Natural History, Washington, D.C. (USNM).

TAXONOMIC CHARACTERS

The taxonomic characters used in this study are based on the male genitalia, the nature of the labellum, and any markings, especially on the face, frons and scutellum. Occasionally the ring sclerite (7th abdominal segment) of the male proved useful. Features of the female post-abdomen were examined, but since no pairs were captured in copula, it was not possible in most cases to assign the females to any particular species and so they were omitted from detailed study here. This is especially true of the group of 29 very closely related species of *Poecilominettia* found on the island of Barro Colorado. Steyskal (1971), in his study of species of the *Minettia obscura* group in North America, found that the only useful characters for separating five closely related species were those of the male genitalia.

Part of the male genitalia was readily examined without dissection, viz. the epandrium (dorsal part of the periandrium), and the pair of articulated lobes borne on the periandrium which function as claspers during copulation (variously termed gonopods, telemeres, basimeres or parameres). It was necessary to mount the aedeagus on a slide, however, in order to examine the internal structures. Usually the aedeagus is strengthened on the inner wall of its lobe-like structure by sclerotised spines and by long chitinised rods armed with posteriorly pointing spines. Occasionally the aedeagus is a delicate inflatable sac, similar to that observed in the family Celyphidae which, according to Griffiths (1972), is grouped with the Lauxaniidae into the superfamily Lauxanioidea.

The hypandrium can in some cases be seen without dissection, but usually its outline is best observed on a slide since its structure is delicate.

In some species the ring sclerite is distinctive, when its characteristic shape is a useful additional item in defining the species.

The labellum is best examined microscopically. This was done by dissecting off the ventral surface and mounting it on a slide. The two halves, when opened out and flattened, present a heart shape which varies slightly from species to species. The distal area bears upstanding structures in rows along the borders of the pseudotracheal canals (Figs 14, 15). These enable the flies to graze upon phylloplane fungi, proof of which is readily obtained by examination of the pseudo-tracheal canals and gut content. This modification of the feeding surface of the labellum has been described for many species in various genera of Lauxaniidae, both in Britain as well as Panama (Broadhead, 1984). Fungal-feeding species of lauxaniid flies have fewer and broader pseudo-tracheal canals than liquid-feeding species (Broadhead, 1984).

GENERIC EVALUATIONS

Since the establishment of *Minettia* Robineau-Desvoidy, 1830, with *nemorosa* (= *rivosa*) as type
species, the large number of species, whose only common feature is the presence of an intra-alar bristle, has been grouped into a number of genera. Minetia s.str. has been defined most clearly and most recently by Stuckenberg (1971) to include those species with the following characters: an intra-alar bristle, frons usually as wide as an eye, face dull, wings rarely patterned, arista only short-haired, ocelli in an equilateral triangle or nearly so and quite widely spaced, ocellar bristles as wide apart as the posterior ocelli and placed forwards so that they are in line or almost in line with the hind edges of the anterior ocellus. For the British species, Collin (1932) noted that the ocellar bristles are situated outside an imaginary line connecting the outer faces of the anterior and posterior ocelli.

I propose to add two further characters, viz. the presence of delicate upstanding structures in rows along the borders of the pseudo-tracheal canals on the distal half of the ventral surface of the labellum, and pseudo-tracheal canals wide, well strengthened by broad half hoops in the distal areas, as well as being reduced in number. For the type species rivosa there are 7 on each half of the labellum. Although the broad half hoops of the pseudo-tracheal canals can be readily seen, the structures bordering them are delicate and best shown on scanning electron micrograph (Broadhead, 1984).

In Homoeominettia and Poecilominettia the half hoops in the outer area of the labellum are not wider than those of the basal area, and the structures associated with fungal grazing are well selected and very easily observed.

Certain species currently placed in Minetia do not fall within the definition of the genus and are here transferred to other genera. Two species, tintinervis Malloch, 1926 (comb. n.) and fuscinervis Malloch, 1926 (comb. n.) are here placed in Floriminettia gen. n., described below.

Three other species, geniseta Malloch, 1926, approximata Malloch, 1928 and assimilis Malloch, 1926, were somewhat tentatively placed in Deutominettia by Malloch, although geniseta and assimilis were originally placed by him in Minetia. All three do not have the striking feature of the genus Deutominettia, namely a haired scutellar disc. They have a shining face and long plumes on the arista (features not characteristic of the genus Minetia). For them I propose to erect Homoeoaminettia gen. n., also described below.

Two further species currently in Minetia, bruneicosta Malloch, 1928, and quadrata Malloch, 1928, do not fall within the definition of the genus Minetia s.str. in respect of the position of the ocellar bristles. In addition, although the labellum has a reduced number of pseudo-tracheal canals with upstanding structures on the distal area, the supporting half hoop are not broad as they are in rivosa. I now place these two species (comb. n.) in Poecilominettia along with 51 of the new species described in this paper. Poecilominettia was erected by Hendel (1932) for certain Central American species that differed from Minetia s.str. in that their anterior orbital bristles are closer to the anterior border of the frons than to the second orbital bristles, that the ocelli are arranged in an isosceles triangle with the sockets of the ocellar bristles close together and well behind the anterior ocellus, and that the ocellar bristles are short and divergent. The type species is picticornis Coquillet, 1898.

I propose to add two further characters to this diagnosis, namely, the presence of upstanding structures in rows along the borders of the pseudo-tracheal canals on the distal half of the ventral face of the labellum, and pseudo-tracheal canals wide, ranging in number from 9 to 12 on each half of the labellum, the number being constant for each species (Figs 14, 15).

The shape of the ocellar triangle is probably of less significance here than the position of the ocellar bristles on it, i.e., in Poecilominettia the ocellar bristles are situated about half-way between the anterior and posterior ocelli, the space between them varying with the shape of the triangle formed by the three ocelli. Hendel (1932) transferred a number of species from Minetia to Poecilominettia which do in fact have ocellar triangles varying from isosceles to equilateral, but whose ocellar bristles always have their sockets within an imaginary line drawn from the outer face of the anterior to the posterior ocellus and situated at least half-way between the anterior and posterior ocelli.

KEY TO THE GENERA
POECILOMINETTIA, FLORIMINETTIA AND HOMOEOMINETTIA

1. Fronto-facial angle about 90°. Anterior orbital bristle equidistant from anterior border of frons and posterior orbital bristle. Labellum with 20 narrow pseudo-tracheal canals on each half, which do not bear any upstanding structures . FLORIMINETTIA
 - Fronto-facial angle obtuse. Anterior orbital bristle nearer to anterior border of frons than to posterior orbital bristle. Labellum with considerably fewer, wide pseudo-tracheal canals on each half, bearing upstanding structures on their borders on distal area .

2.
2 Ocellar bristles long, almost parallel and directed forwards. Arista with long plumes. Yellow flies without dark markings on face, frons or scutellum. Body length not less than 5.5 mm

- **HOMEOOMINETTIA**

- Ocellar bristles short and divergent. Arista more frequently with short hairs, but if with long plumes, then distinct black markings on face, frons and scutellum, and thorax with black stripes. Predominantly yellow flies. Body length 4.5 mm or less.

POECILOMINETTIA

FLORIMINETTIA gen. n.

TYPE SPECIES: *Floriminettia coronata* sp. n.

DIAGNOSIS. An intra-alar bristle, anterior part of frons drawn out to form a small peak between antennal bases, face shining centrally with silvery dusting at eye margin, labellum with 20 narrow pseudo-tracheal canals on each half, without any upstanding structures on their borders, wings with veins outlined, arista with railing of medium length, ocellar bristles placed well behind anterior ocellus and fairly close together.

Key to species of Floriminettia

1 Scutellum with black spots at apex. One large triangular spot centrally on 5th abdominal tergite. Wings with costal infuscation and all other veins strongly outlined *fascinervis* (Malloch)

- Scutellum without marks at apex

2 3rd antennal segment oval, twice as long as wide. Two lateral spots on 5th abdominal tergite. Wings with costal infuscation and all other veins strongly outlined *tinctinervis* (Malloch)

- 3rd antennal segment tapering, three times as long as width at base. No spots on abdominal tergites. Wings without costal infuscation and all veins distinct but yellow

3 Thorax with central brown stripe and broken stripe on either side. Anterior part of frons produced upwards centrally at antennal bases. Body length 6 mm *ficusulnea* sp. n.

- Thorax not striped. Anterior part of frons barely produced upwards at antennal bases. Body length 7 mm *coronata* sp. n.

Floriminettia coronata sp. n.

Large yellow fly. Body length 7 mm. All bristles strong.

Head yellow with face keeled centrally. Fronto-facial angle about 90°. Frons wider anteriorly and drawn out to form small peak between antennal bases. Antennal segments 1 and 2 slightly longer than wide, segment 3 long-oval (3 times width) and covered with hairs, the dorsal ones being half width of segment. Aristal hairs medium long. Orbital plates shining, closer together anteriorly than posteriorly. Anterior orbital bristles shorter than posterior. Ocellar plate yellow. Face shining centrally, with silver dusting along eye margin. Eyes red, oval. Palps yellow. Labellum with 20 narrow pseudo-tracheal canals on each half which do not bear any upstanding structures. Thorax unstriped, orange-yellow with scutellum paler and edged with fine dark border. Aestegostyles in 8 rows. Prescutellars reaching as far as scutellum apex. Wings slightly smoky yellow, veins dark yellow. Legs yellow. Four postero-ventral bristles, 5 postero-dorsals, 3 nearly true dorsals on femur 1; 6 very sturdy short bristles antero-ventrally on apical half and one posterior bristle apically on femur 2; 4 strong procline bristles antero-ventrally on femur 3. Ring of strong spines apically on tibia 2. Dorsal pre-apical of tibia 2 much stronger than that of other tibiae. Abdomen same colour as thorax without marks dorsally, other than fine darkened borders posteriorly on tergites. Paler ventrally and sparsely haired. Ring sclerite (7th abdominal segment) yellow.

Male genitalia (Fig. 13E, F). Clasper small with hooked tip. Hypandrium with long pointed processes. Aedeagus bilobed at tip and containing very small spines. No mark on epandrium.

Female similar to male.

HOLOTYPE. ♀, **Barro Colorado Island:** iii. 1983, light-trap (BMNH).

PARATYPES. **Panama:** 4 ♀, Panama City end of Panama canal, vii. 1979, fogging high canopy; 2 ♀, **Barro Colorado Island,** xi. 1982, light-trap, v. 1983; 1 ♀, **Barro Colorado Island,** x. 1982, light-trap (all BMNH).

Floriminettia *ficulnea* sp. n.

Yellow fly. Body length 6 mm. All bristles strong.

Head yellow with face keeled centrally, shining but with silver dusting along eye margin. Fronto-facial angle about 90°. Frons wider anteriorly and produced upwards at antennal bases, and drawn out to form small peak between antennal bases. Antennal segments 1 and 2 slightly longer than wide, segment 3 long-oval and tapering (3 times width at base) and covered with hairs. Arista with short hairs. Anterior orbital bristle shorter than posterior. Orbital plates shining, closer together anteriorly than posteriorly. Ocellar plate yellow. Ocellar bristles short, divergent. Frons orange-
yellow. Palps yellow. Labellum with 20 pseudo-tracheal canals on each half which do not bear any upstanding structures. Thorax with a central brown stripe and a broken stripe on either side. Acrosticals in 12 irregular rows. Prescutellar reaching to the apex of the scutellum. Wings faintly yellowish with veins yellow. Legs yellow. Femur 1 with 7 bristles irregularly from postero-dorsally at base to dorsally at apex and 6 bristles posteriorly; femur 2 with 6 bristles antero-ventrally, one strong posterior bristle, a row of long hair-like bristles on apical half, 6 bristles irregularly antero-ventrally; femur 3 with a row of hair-like procinate bristles on apical half, and one strong bristle postero-dorsally near apex. Tibia 2 with dorsal pre-apical, ventral apical bristle and apical spines all very strong. Abdomen yellow, without marks.

Male genitalia not dissected, since holotype somewhat fragile.

Female similar to male.

Holotype. ♀. Panama: Barro Colorado Island, ex fruit of wild Ficus, x. 1937 (Zetek no. 4421, Lot no. 39 11659) (USNM).

Paratype. 1 ♂, same data as holotype.

These two specimens are labelled in pencil ‘Nimetta immaculata type’ but without any author’s name. They do not exhibit the characters of the genus Nimetta and clearly are closely related to the other species of Floriminetta.

HOMOEOMINETTIA gen. n.

Type species. Deutominettia assimilis Malloch, 1926.

Diagnosis. An intra-alar bristle, face shining, arista with long plumes, anterior orbital bristle nearer to anterior border of frons than to second orbital bristle, length of third antennal segment at least 2.5 times width, ocellar bristles long, almost parallel and directed forwards, their sockets situated about half-way between anterior and posterior ocelli and well separated, ocelli arranged in an isosceles triangle, spines usually present on mid tibia postero-ventrally, labellum with reduced number of pseudo-tracheal canals bearing upstanding structures on distal half of ventral surface.

Key to species of Homoeominettia

1 Abdomen without markings. Spines present postero-dorsally on mid tibia. Third segment of antenna shorter, oval (2.5 times width). Body length about 5.5 mm .. 2

2 Three or four long spines on mid tibia postero-ventrally .. assimilis (Malloch)

− Seven to nine short spines on mid tibia postero-ventrally .. 3

3 Wings with distinct clouds on cross-veins approximata (Malloch)

− Wings without clouds on cross-veins geniseta (Malloch)

Homoeominettia woldae sp. n.

Large dark yellow fly, lightly grey-dusted. Body length 8 mm.

Head with face profile almost flat. Fronto-facial angle obtuse. No marks on face or frons. Ocellar plate darkened. Palps dark yellow. Antenna yellow, segment 3 long-oval (3 times width), with long plumes on arista. Labellum elongate heart-shaped with 16 pseudo-tracheal canals on each half. Thorax with 3 thin dark stripes. Acrosticals in 12 irregular rows. No spots on scutellum. Prescutellars reaching to just over half-way to apex of scutellum. Thoracic segments finely bordered in black. Halteres yellow. Wings dark yellow with costal streak continued into vein 4, half-way to outer cross-vein, and with brown round spots on cross-veins. Legs dark yellow; 6 bristles postero-dorsally and 6 postero-ventrally on femur 1; 5 short stout bristles antero-ventrally on femur 2; row of hairs apically antero-ventrally on femur 3. Abdomen dark yellow with 3 triangular marks and dark posterior borders on all but anterior tergite. Very pale ventrally. Ring sclerite dark, complete.

Male genitalia small (Fig. 5A). Epandrium without black spot. Clasper with two-clawed tip. Hypandrium with 2 processes, Aedeagus with rods inside and small hook dorsally some distance from tip.

Female similar to male with genital segments all yellow.

POECILOMINETTIA Hendel

Type species: Sapromyza picticornis Coquillet, by monotypy.
Key to species of Poecilominettia from Panama and neighbouring regions

1 At least segment two of antenna black, thorax distinctly striped .. 2
 - All segments of antenna yellow or yellowish, thorax striped or not striped 14

2 Two basal segments of antenna black .. 3
 - Only segment two of antenna black, palps yellow, no stripes on sternopleuron or mesopleuron (Barro Colorado Island) . fungivora sp. n.
 - Wings with conspicuous markings in addition to clouding over cross-veins. tripuncticeps (Malloch)
 - Wings unmarked apart from possible clouding over cross-veins 4

3 Six thoracic stripes .. breviplumata Hendel
 - Four thoracic stripes .. 5
 - Arista with long plumes .. 6
 - Arista with short hairs .. 7

4 Acrosticals in 10 rows, frons slightly longer than broad .. picicornis (Coquillett)
 - Acrosticals in 6 rows, frons slightly shorter than broad .. sexiseriata Hendel

5 Thoracic stripes extending as far as apex of scutellum, even if faintly after suture 8
 - Thoracic stripes not continuing as far as apex of scutellum .. 12

6 Small species (body length 2.0-2.5 mm) .. 9
 - Larger species (body length 4 mm) (Fortuna) spinosa sp. n.

7 Thoracic stripes distinctly marked throughout entire length, no conspicuous black spines at base of aedeagus of male .. 10
 - Thoracic stripes becoming fainter after suture, conspicuous black spines at base of aedeagus of male .. 11

8 No dark marks on lateral borders of abdominal sternites, clasper of male broad and delicate (Fig. 2A) (Barro Colorado Island) .. trigona sp. n.
 - Dark borders present laterally on last abdominal sternite, clasper delicate but less broad (Fig. 2B) (Barro Colorado Island) .. membranosa sp. n.

9 Black spines at base of aedeagus of male as long as aedeagus (Fig. 4D, F) (Miran) .. virgea sp. n.
 - Black spines at base of aedeagus of male about one quarter of length of aedeagus (Fig. 4C) (Barro Colorado Island) .. cornuta sp. n.

10 Palps dark at base only. Clasper of male produced to form two claws, the lower one broader and not curled. Hypandrium distinctly indented in centre (Fig. 4A) (Barro Colorado Island) .. epacra sp. n.
 - Palps entirely black .. 13

11 Clasper of male very large, black and sickle-shaped (Fig. 3Fb) (Barro Colorado Island) .. falcata sp. n.
 - Clasper of male smaller, not black, produced to form two claws, the lower one with curled tip.
 - Hypanidrium almost flat centrally (Fig. 4B) (Barro Colorado Island) .. cordata sp. n.

12 Thoracic stripes distinct .. 15
 - Thoracic stripes absent or at most very faint .. 18

13 Wings with distinct marks in addition to clouding on cross-veins .. octovitata (Williston)
 - Wings unmarked apart from clouding on cross-veins .. 16

14 Pleurae with stripes .. valida (Walker)
 - Pleurae without stripes .. 17

15 Palps yellow, abdominal tergites with dark posterior borders and central marks. Clasper of male large, wider than long, aedeagal internal spines very convoluted (Fig. 3A) .. zebroides Hendel
 - Palps black. Abdominal tergites without dark posterior borders, but with central marks. Clasper of male rounder (Fig. 2F), aedeagal spines less convoluted (Fig. 3A) (Barro Colorado Island) silbergliedii sp. n.

16 No marks on scutellum .. 19
 - Two black marks at apex of scutellum which may continue underneath. No mark on face .. 31

17 Black central mark on face .. 20
 - No mark on face .. 23

18 Wings extensively marked (Fig. 1), greyish yellow species with single central dark spot on each of last three abdominal tergites. Body length 4.25 mm. (Fortuna) .. fumida sp. n.
 - Wings unmarked apart from any clouding on cross-veins. Body length 2.0-2.5 mm. .. 21

19 Abdominal tergites with dark posterior bands. Head with labrum slightly projecting (Fig. 1A) (Fortuna) fortunae sp. n.
 - Abdominal tergites without dark posterior bands. Male genitalia distinctive: aedeagus with one projecting spine and numerous strongly sclerotised internal spines (Fig. 6B, C) .. 22

20 Male clasper with sclerotised tooth basally, epandrial black spot long-oval, hypandrium with four processes (Fig. 6C) (Barro Colorado Island) .. 22
 - Male clasper without sclerotised tooth, epandrial black spot chevron-shaped, hypandrium with two processes (Fig. 6B) (Barro Colorado Island) pygmaea sp. n.

21 Wings strongly yellow .. 24
 - Wings not yellow .. 25

22 Ring sclerite of male black, conspicuous and complete (Fig. 12E), tip of clasper pointed (Fig. 5E) (Fortuna) .. circularis sp. n.
 - Ring sclerite of male black, less conspicuous and incomplete (Fig. 12F), tip of clasper rounded (Fig. 5F) (Fortuna) .. ungulata sp. n.

23 Male genitalia as in Fig. 5B (Fortuna) .. nigriapica sp. n.
- Wings not marked apart from possible clouding on cross-veins 26
- Very small species (body length 2.5 mm) 27
- Larger species (body length 4.0-4.5 mm) 28
27 Arista bare. Male genitalia as in Fig. 6D (Gatun) silicola sp. n.
- Arista with short hairs. Male genitalia as in Fig. 13B, C. (Gatun) gatuna sp. n.
28 Abdominal tergites with posterior dark bands. Male genitalia as in Fig. 1D (Fortuna) obtusa sp. n.
- Abdominal tergites without posterior dark bands. 29
29 Thorax with indistinct stripes not reaching beyond second dorso-central bristle. Male genitalia as in Fig. 5C. (Fortuna) lineolata sp. n.
- Thorax without stripes 30
30 Frons as long as broad unicolor Hendel
- Frons broader than long chilensis (Schiner) 31
Wing with very dark costal area becoming less dark posteriorly bruneicosta (Malloch)
- Wing not thus 32
32 Wing with seven large dark marks
- Wing not thus 33
33 Wing yellow. Abdominal tergites with narrow dark bands posteriorly. Scutellum finely bordered in black. Male genitalia as in Fig. 5D (Fortuna)
- Wing hyaline, at most, cross-veins slightly clouded 34
34 Black marks at tip of scutellum very small (less than twice diameter of bristle socket) and distinctly circular in shape grata (Wiedemann)
- Black marks at tip of scutellum much larger and more irregular in shape (Barro Colorado Island)
- Clasper widening out from base (Fig. 11A, D) 3
- Clasper not widening out from base (Fig. 7G) 4
3 Group of bristles at base of clasper (Fig. 11A)
- No bristles present at base of clasper (Fig. 11D)
- Hypandrium with three processes (Fig. 7G)
- Hypandrium with two short processes (Fig. 7L)
- Hypandrium with three processes (Fig. 7G)
- Hypandrium with two short processes (Fig. 7L)
- Hypandrium with three processes (Fig. 7G)
- Hypandrium with two short processes (Fig. 7L)
5 Claspers, in natural position, with sclerotised edge of one forming, along with that of the other, a distinctive scoloped border (Fig. 7M) effossa sp. n.
- Claspers not thus 6
6 Clasper curved, with long axis lying in two planes 7
- Clasper not thus 11
7 Group of two or three strong spines at base of clasper (Fig. 8A, C) 8
- No spines present at clasper base (Fig. 10F)
- Hypandrium with two processes and indentation centrally 9
- Hypandrium with three processes 10
9 Clasper pointed at tip, aedeagus large, containing a number of sclerotised rods. No mark on frons
- Clasper not pointed, aedeagus smaller, containing rows of small spines. Frons with dark mark on anterior edge (Fig. 8C, F) 11
- The three processes of hypandrium very short and of equal length (Fig. 8H) 12
- Outer processes of hypandrium longer than central one and bearing small spines (Fig. 8I)
- Clasper tip pointed 12
- Clasper tip rounded 13
12 Hypandrium with six processes, two pairs pointing anteriorly and one curved pair pointing posteriorly (Fig. 11G) 14
- Hypandrium with fewer than six processes 15
13 Hypandrium with four processes 14
- Hypandrium with fewer than four processes 15
14 Central pair of processes of hypandrium about half length of outer pair which are straight (Fig. 8G)
- Central pair of processes of hypandrium less than one-quarter length of outer pair which are curved inwards (Fig. 10I) 16
- Hypandrium with three processes 16
- Hypandrium with two processes 19
15 Hypandrium with three processes 16
16 Central process of hypandrium short, the outer pair curving outwards (Fig. 9K) 17
- Hypandrium with three processes 16
- Hypandrium with two processes 19
16 Central process of hypandrium short, the outer pair curving outwards (Fig. 9K) 17
- Central process of hypandrium almost as long as outer pair or considerably longer 17

Key to species of the effossa group in the Panama Canal area

Males only

These 29 species have been obtained from the light-trap on Barro Colorado Island. Two of them have also been obtained from fogging the high canopy, membranosa from the Atlantic end, flavescens from both the Atlantic and Pacific ends of the Panama Canal. These 29 closely related species of Poecilominettia have been assigned to the effossa group on the basis of the following characters: ocellar bristles short, divergent, with their sockets situated half-way between anterior and posterior ocelli, short hairs on arista, body colour yellow without markings except for two black spots at apex of scutellum and one on epandrium.

1 Clasper delicate, without dark sclerotisation 2
- Clasper with dark sclerotisation 5
Descriptions of new species of Poecilominettia

In all species the dorsal pre-apical bristle and the ventral apical bristle of the mid tibia are very much stronger than those of the other tibiae. In addition, the mid tibia has a ring of short but strong spines at the apex. Where only one specimen was available, the labellum was not removed so that the exact number of pseudo-tracheal canals could not be counted. The structural modifications of the labellum could nevertheless be easily seen under the microscope. The number of sternopleural bristles is always 2.

Poecilominettia acuta sp. n.

Small yellow fly. Body length 3 mm.

Head yellow with distinct dark mark below eye on cheek. Fronto-facial angle obtuse. Head not shining except orbital and ocellar plates. Eyes green. Palps yellow. Labellum slightly elongated heart-shaped. Antennal segments all yellow. Aristal hairs short. Thorax orange-yellow, unstriped. Acrostichals in 6 rows. Prescutellar bristles reaching to over half-way to apex of scutellum. Scutellum paler, especially at tip. Two scutellar spots mainly below, with narrow dark border in between. Halteres yellow. Wings faintly yellowish with cross-veins only very slightly darkened. Legs paler; femur 1 with 7 bristles on row curving from postero-dorsally at base to dorsally at apex, 5 bristles posteriorly, and 5 long bristles postero-ventrally; femur 2 with 6 strong short spines antero-ventrally and one bristle posteriorly at apex; femur 3 with 5 procline hairs apically antero-ventrally. Abdomen paler orange-yellow. Bristles all delicate. Dorsally the anterior half of tergites bare and posteriorly the small bristles irregularly arranged. Posterior rims not darkened.

Male genitalia. Epandrial black spot roughly square. Clasper with sclerotised pointed tip and curved over at base (Fig. 12B). Hypandrium with 3 processes, central one long and pointed (Fig. 12D), and outer pair each with a bristle. Aedeagus elongated, narrow but enlarged somewhat at tip and containing many fine sclerotised rods.

Holotype. σ°. **Panama:** Barro Colorado Island, ii.1983, light-trap (BMNH).

Paratype. 1 σ°, same data.

Poecilominettia aurita sp. n.

Yellow fly. Body length 4 mm.

Head yellow without markings except brownish patch below eye and darkened mouth rim on
labrum. Eyes red. Head not shining except ocellar and orbital plates. Fronto-facial angle obtuse, facial profile slightly convex. Palps yellow. Labellum, elongated heart-shaped. All antennal segments yellow. Aristal hairs short. Thorax strong orange-yellow. Acrosticals in 6 rows. Prescutellar bristles reaching to over half-way to apex of scutellum. Scutellum not paler except at extreme apex, with two black spots at tip which is pointed between apical bristles. Halteres yellow. Wings yellowish with veins yellow and cross-veins darkened. Legs yellow; femur 1 with 6 bristles on row curving from postero-dorsally at base to dorsally at apex, 5 posteriorly, and 6 long bristles postero-ventrally; femur 2 with 4 strong bristles anteriorly and 1 posteriorly at apex; femur 3 with 6 procline hairs apically antero-ventrally. All bristles strong. Abdomen paler than thorax. No marks but a noticeable banding effect produced by absence of bristles on anterior half of tergites.

Male genitalia. Epandrial black spot approximately square. Clasper with sclerotised tip and group of spines at base (Fig. 13Aa). Hypandrium with two widely separated processes (Fig. 10H) bearing spines. Aedeagus flat and broad at tip and containing bent rods (Fig. 13Ab)

Holotype. ♂, Panama: Barro Colorado Island, ii.1982, light-trap (BMNH).

Poecilominettia biprojecta sp. n.

Small bright yellow fly. Body length 3 mm.

Head yellow, not shining, except ocellar and orbital plates. Fronto-facial angle obtuse. Face profile slightly convex. No marks except slightly darkened anterior border of frons. Eyes red and round. Antennal segments all yellow. Aristal hairs short. Palps yellow. Labellum oval in shape with 9 pseudotracheal canals on each half. Thorax orange-yellow with two faint brown stripes, reaching as far as suture. Acrosticals in 6 rows. Prescutellar bristles reaching to apex of scutellum. Scutellum not paler, with the two apical black spots mainly below. Halteres pale yellow. Wings faintly yellow with veins yellow. Distinct 1-shaped marks on cross-veins surrounded by clouds. Legs pale yellow; femur 1 with 6 bristles on row curving from postero-dorsally at base to dorsally at apex, 4 small bristles posteriorly, 5 long bristles postero-ventrally; femur 2 with 6 strong short spines anteriorly, 1 bristle posteriorly at apex; femur 3 with 5 procline hairs antero-ventrally. Abdomen paler than thorax. No marks. Ventrally paler still with small delicate bristles on sternites.

Male genitalia. Epandrial black spot roughly square. Clasper somewhat rounded with protuberance at base bearing spines (Fig. 10A). Hypandrium with two processes pointing laterally and with bristles on outer face (Fig 10C). Aedeagus broad, delicate, containing several delicate rods.

Holotype. ♂, Panama: Barro Colorado Island, ii.1983, light-trap (BMNH).

Poecilominettia calva sp. n.

Yellow fly. Body length 4.25 mm.

Head not shining except ocellar and orbital plates. Fronto-facial angle obtuse. Face profile slightly convex. Eyes shot red-green. Palps yellow. Labellum slightly pointed heart-shaped with 9 pseudotracheal canals on each side. Brownish mark on labrum at mouth rim. All antennal segments yellow. Aristal hairs short. Thorax orange-yellow. Acrosticals in 6 rows. Prescutellar bristles reaching to apex of scutellum. Halteres yellow. Wings yellowish. All veins yellow. Legs pale yellow with distal rim of tibiae darkened. Femur 1 with 8 bristles on row curving from postero-dorsally at base to dorsally at apex, 9 short bristles posteriorly, and 6 long bristles postero-ventrally; femur 2 with 5 short, stout spines antero-ventrally and 1 bristle posteriorly at apex; femur 3 with 7 procline hairs apically antero-ventrally. Abdomen with posterior segments darkened. Rims of tergites not dark. Stermites sparsely haired (Fig. 9f).

Male genitalia. Epandrial black spot roughly square. Clasper small with tip sclerotised (Fig. 9C). Hypandrium with short central process and pair of long outer curved processes bearing a spine (Fig. 9Gb). Aedeagus large, flat at tip and containing sturdy spined rods (Fig. 9Ga).

Holotype. ♂, Panama: Barro Colorado Island, ii.1983, light-trap (BMNH).
Paratypes. 9 ♂, same data but also i.1983, (BMNH).

Poecilominettia chelata sp. n.

Yellow fly. Body length 3.75 mm.

to tip of scutellum. Acrosticals in 6 rows. Wings slightly smoky with cross-veins darker. Legs yellow, not pale; femur 1 with 5 bristles postero-dorsally, 6 long bristles postero-ventrally, and 5 shorter bristles posteriorly; femur 2 with 5 short stout spines antero-ventrally and 1 bristle posteriorly at apex; femur 3 with 6 proclinate hairs apically antero-ventrally. All bristles strong. Abdomen same colour as thorax. No marks on tergites but with brown posterior rings on segments 3, 4 and 5.

Male genitalia (Fig. 10F, G). Epandrial black spot narrow, widening posteriorly (Fig. 10Fa). Clasper very thin, long and claw-like (Fig. 10Fb). Aedeagus (Fig. 10Fc) with sac rounded at tip and containing rods and small spines. Hypandrium (Fig. 10G) with 2 short processes.

Holotype. ♂, Panama: Barro Colorado Island, i.1983, light-trap (BMNH).
Paratypes. 2 ♂, same data but i., iv.1983 (BMNH).

Poecilominettia circularis sp. n.

Dull dark yellow fly with grey dusting. Body length 4.5 mm.

Head dark yellow with grey dusting. Face profile flat. Fronto-facial angle obtuse. No central spot on face, but dark mark below eye on cheek, and darkened mouth rim. Palps pale yellowish. Labellum with 10 pseudo-tracheal canals on each half. Antennal segments all yellow. Aristal hairs short. Frons with central yellow stripe. Darker stripe on either side. Ocellar plate dark. Thorax yellow with 4 greyish brown stripes, the inner pair extending as far as suture, the outer pair half-way to suture. Acrosticals in 10 rows. Prescutellars reaching to just over half-way to scutellum apex. All bristles strong. All segments finely edged black. Wings yellow. Legs yellow, femora paler than rest; femur 1 with 4 strong bristles postero-ventrally, 6 on row curving from postero-dorsally at base to dorsally at apex, 6 posteriorly, 6 postero-ventrally; femur 2 with 6 short, stout spines antero-ventrally and 1 bristle posteriorly at apex; femur 3 with 4 proclinate bristles apically antero-ventrally; tarsus 3 with longer than usual scale-like hairs ventrally. Abdomen with tergites distinctly bordered black posteriorly. Ventrally paler with sternites well bristled. Ring sclerite yellow.

Male genitalia (Fig. 5D). Epandrial black spot roughly triangular. Clasper blunt, somewhat square at edge (Fig. 5Dc). Hypandrium sclerotised, presenting a shallow curved outline when viewed from posterior position. Aedeagus beak-like, sturdy (Fig. 5Db).

Poecilominettia cordata sp. n.

Yellow fly with black thoracic stripes. Body length 3 mm.

Head yellow, not shining except orbital plates. Face profile flat. Fronto-facial angle obtuse. Square black spot centrally on face at mouth rim. Diffuse brown mark on frons. Ocellar plate dark. Antennal segments 1 and 2 black, 3 yellow with hairs on arista medium short. Palps dark. Labellum with reduced number of canals not counted. Thorax bright orange with 2 stripes on pleurae, 4 stripes on dorsum, the outer pair very short, less than half-way to suture, inner pair...
faint, terminating at anterior dorso-central bristle. Acrosticals in 6 rows. Halteres pale. All bristles strong. Scutellum pale with 2 black spots continued underneath. Wings slightly smoky with veins yellow. Legs pale yellow. Femur 1 with 5 bristles dorsally, 4 posteriorly, and 6 postero-ventrally; femur 2 with 6 sturdy short spines antero-ventrally and 1 posterior bristle at apex; femur 3 with 6 procline hairs apically antero-ventrally. Tibia 3 with dark mark at base. Abdomen with narrow triangular marks and dark lateral borders present on last 3 segments. Central dark marks also on last 2 segments. Stermites without dark borders. Hairing on sternites short, delicate, except laterally where hairs are longer.

Male genitalia (Fig. 4B). Epandrial black spot long oval. Clasper yellow with fine point dorsally, curved to form short hook ventrally (Fig. 4Ba). Hypandrium almost flat anteriorly (Fig. 4Bc). Aedeagus with bilobed tip and containing straight rods (Fig. 4Bb).

Holotype. ♂, Panama: Barro Colorado Island, xii.1982 (BMNH).

Poecilominettia cornuta sp. n.

Small yellow fly with striped thorax. Body length 2.5 mm.

Head yellow. Face profile flat. Fronto-facial angle obtuse. Square black spot on face. Brown mark on frons short distance from anterior edge. Palps dark. Labellum with 6 wide pseudo-tracheal canals on each half. Ocellar plate dark. Antennal segments 1 and 2 black, 3 yellow with aristal hairs of medium length. Thorax with 2 stripes across pleurae, 4 stripes on dorsum - outer pair dark and distinct as far as half-way to suture, inner pair becoming faint at same level as outer but continuing to apex of scutellum. Scutellum with 2 black spots at tip. Pre-scutellars short - reaching only half-way to scutellum apex. Acrosticals in 6 rows. All bristles rather delicate. Wings hyaline, veins yellow. Legs pale yellow; femur 1 with 5 bristles on row curvature from postero-dorsally at base to dorsally at apex, 4 bristles posteriorly, 6 postero-ventrally; femur 2 with 4 short strong spines antero-ventrally and 1 bristle posteriorly at apex; femur 3 with 3 procline hairs apically antero-ventrally. Tibia 3 with dark mark at base. Abdomen yellow. Last 3 segments with dark central lines flanked by laterally placed triangular marks as well as spots on lateral borders. No marks ventrally.

Male genitalia. Epandrial black spot elongate rectangular. Clasper with curved edge between two tooth-like sclerotised points (Fig. 4Cb). Aedeagus containing rods which fan out when aedeagal sac is extended (Fig. 4Ca), 2 short and very sturdy rods curved at base of aedeagus (Fig. 4Cc). Hypandrium with anterior emargination (Fig. 4Cd).

Paratypes. 3 ♂, same data but x.1983 (BMNH).

Poecilominettia curvata sp. n.

Yellow fly. Body length 3.25 mm.

Head yellow with marks only on rim of labrum and below eye on cheek. Not shining except orbital and ocellar plates. Ocellar plate dark yellow. Eyes green. All antennal segments yellow. Aristal hairs short. Fronto-facial angle obtuse. Palps yellow. Labellum with wide pseudo-tracheal canals not counted. Thorax orange-yellow with three indefinite stripes, the outer pair short and reaching as far as suture. Acrosticals in 8 rows. Prescutellar bristles reaching just over half-way to apex of scutellum. Two black spots at tip of scutellum. Wings slightly smoky, veins yellow, cross-veins darkened. Legs yellow, femora more orange-yellow; femur 1 with 5 bristles on row curvature from postero-dorsally at base to dorsally at apex. 4 short slightly curled bristles posteriorly, 5 long bristles postero-ventrally; femur 2 with 5 short sturdy spines antero-ventrally, 1 hooked bristle postero-dorsally at apex, as well as the usual pre-apical; femur 3 with 6 slender procline hairs apically antero-ventrally. Abdomen with first three segments paler than rest. Anterior third of each segment bristleless, posterior two-thirds with irregular bristling, giving a banded appearance. Tergites with distinct posterior rims but not darkened.

Male genitalia. Epandrial black spot square. Clasper small, sturdy, with sclerotised hooked tip (Fig. 9E). Hypandrium with 3 processes, central one short, rounded, the outer pair long, curving outwards (Fig. 9K). Aedeagus broad, blunt at tip and containing rods.

Poecilominettia effossa sp. n.

Orange-yellow fly. Body length 4 mm.

Head not shining except ocellar and orbital plates. Dark mark on labrum parallel to mouth rim. No marks on face or frons. Face profile almost flat. Fronto-facial angle obtuse. Palps yellow. Labellum heart-shaped with 10 pseudo-tracheal
canals on each side. Antenna all yellow with aristal hairs short. Thorax with one faint central stripe, narrow and dark, and an outer pair indeterminate. Acrosticals in 8 rows. Scutellum with 2 spots at tip. Pre-scutellars reaching almost to tip of scutellum. Scutellum pale. Wings slightly smoky, veins yellow, cross-veins not marked. Halteres yellow. Femur 1 with 7 bristles on row curving from postero-dorsally at base to dorsally at apex, 6 posterior bristles, 6 long bristles postero-ventrally; femur 2 with twisted row of 6 short stout spines antero-ventrally and 1 posterior bristle at apex; femur 3 with 8 long procline hairs antero-ventrally apically. Abdomen with narrow dark posterior rims on tergites. No other marks except on genital segments. Ring selerite distinct (Fig. 7Mc).

Male genitalia. Epandrial black spot narrow both anteriorly and posteriorly, broader in centre. Claspers, when viewed in natural position, presenting a scalloped edge (Fig. 7Mb). Hypandrium with 4 processes, the inner pair shorter than outer. Aedeagus (Fig. 7Md) containing sclerotised rods.

Paratypes. 9 ♂, same data but i.-iv.1983 (BMNH).

Poecilominettia epacra sp. n.

Yellow fly. Body length 3.25 mm.

Head with face profile slightly convex. Fronto-facial angle obtuse. Face yellow with greyish dusting, central almost square black spot, thin dark mark at mouth rim below eye. Frons dusted grey with brown central line. Ocellar plate dark yellow. Antennal segments 1 and 2 black, 3rd yellow with aristal hairs medium length. Palps dark at base. Labellum with 8 pseudo-tracheal canals on each half. Thorax with 2 stripes on pleurae and 4 on dorsum, the outer pair less than half way to suture, inner pair fainter and terminating after suture. Scutellum pale with 2 black spots at apex. Prescutellars reaching to just over half-way to apex of scutellum. Acrosticals in 6 irregular rows. All bristles strong. Wings yellowish, veins yellow. Legs pale yellow: femur 1 with 5 bristles postero-dorsally, 5 bristles posteriorly, 7 postero-ventrally; femur 2 with 6 short stout spines antero-ventrally and 1 posterior bristle at apex; femur 3 with 5 procline hairs at apex antero-ventrally. Tibia 3 with dark spot at base. Abdomen with thin black central line flanked by narrow, laterally placed triangular markings and with ventral edges of last 3 tergites darkened. Sternites without dark borders.

Male genitalia. Epandrial black spot long oval. Clasper with 2 sharp tips, one long and narrow, the other short (Fig. 4Aa). Hypandrium with 2 pointed processes (Fig 4Ac). Aedeagus pointed at tip and containing a pair of notched rods (Fig. 4Ab).

Poecilominettia erymna sp. n.

Yellow fly. Body length 4 mm.

Head yellow, not shining except ocellar and orbital plates. Eyes green. No mark on frons or face except brownish spot below eye and slightly darkened mouth rim. Fronto-facial angle obtuse.
Face profile almost flat. Palps yellow. Ocellar plate yellow. Labellum heart-shaped with 9 pseudo-tracheal canals on each side. Antenna all yellow with aristal hairs short. Thorax not striped. Acrosticals in 8 rows. Prescutellars reaching beyond half-way to apex of scutellum. Scutellum only slightly paler than thorax, with a slight indentation on either side between scutellar bristles and apex. Two black spots at apex of scutellum continued underneath. Wings faintly yellow, unmarked. Legs yellow; femur 1 with 6 bristles on row curving from postero-dorsally at base to dorsally at apex, 8 long bristles posteriorly, 5 long bristles postero-ventrally; femur 2 with 4 short stout spines antero-ventrally and 1 posterior bristle at apex; femur 3 with 4 proclinate hairs antero-ventrally apically. Abdomen with thin dark posterior rim on tergites. Anterior half of segments clearly without bristles, posterior half with bristles, giving a banded appearance. Ventrally chalky with pale yellow sternites.

Male genitalia. Epandrial black spot roughly square. Clasper not curved (Fig. 9H). Hypandrium with 4 processes, the inner pair short, the outer pair longer and curved inwards (Fig. 101). Aedeagus broad, blunt at tip and containing sturdy sclerotised rods.

Holotype. O’, Panama: Barro Colorado Island, xi.1982, light-trap (BMNH).

Paratypes. 2 O’. same data but xii.1982, iii.1983 (BMNH).

Poecilominettia falcata sp. n.

Yellow fly with striped thorax. Body length 3.5 mm.

Head yellow with face profile flat and face slightly hollowed on either side. Fronto-facial angle obtuse. Square black spot on face, mouth rim darkened. Broad black central line on frons. Ocellar plate dark. Palps black. Antennal segments 1 and 2 black, 3 yellow with aristal hairs medium long. Labellum with reduced number of pseudo-tracheal canals not counted. Thorax with 2 stripes on pleurae, 4 stripes on dorsum, the outer darker before suture, the inner pair fading at 2nd dorsal-central bristle. Scutellum with 2 large black triangular spots. Acrosticals in 6-8 irregular rows. Prescutellars reaching only half-way to apex of scutellum. Wings slightly yellow with very distinct yellow veins. Halteres pale. Legs paler yellow. Femur 1 with 6 bristles antero-ventrally, 6 postero-ventrally, 6 on row curving from postero-dorsally at base to dorsally at apex; femur 2 with 6 short stout spines antero-ventrally and 1 posterior bristle at apex; femur 3 with 6 hairs antero-ventrally apically. Abdomen with striking black markings dorsally: central longitudinal line with long narrow triangular marks laterally which are continued round to ventral edge. Last 2 ventral sternites with dark borders.

Male genitalia with very heavily sclerotised scythe-shaped claspers which bear long spines on inner face and a hook basally (Fig. 3F). Epandrial black spot long and narrow. Hypandrium with one central process spanner-shaped and single short spine near lateral edge (Fig. 3G). Aedeagus containing sclerotised rods.

Holotype. O’, Panama: Barro Colorado Island, x.1982, light-trap (BMNH).

Poecilominettia fimbriata sp. n.

Small yellow fly. Body length 2.75 mm

Head yellow, not shining except ocellar and orbital plates. Face profile flat. Fronto-facial angle obtuse. Ocellar plate yellow. No marks on frons or face except dull brown area below eye. Antennal segments all yellow. Aristal hairs short. Palps yellow, labellum slightly pointed, pseudo-tracheal canals reduced in number, not counted. Thorax yellow, not striped. Acrosticals in 8 rows. Scutellum with 2 black spots at tip mainly underneath. Wings faintly yellowed with cross-veins only slightly darkened. Halteres yellow. Legs clear yellow. Femur 1 with 5 long bristles postero-ventrally, 6 bristles on row curving from postero-dorsally at base to dorsally at apex, 5 postero-dorsally; femur 2 with 4 short stout spines antero-ventrally and 1 posterior bristle at apex; femur 3 with 4 proclinate hairs apically postero-ventrally. Abdomen without marks except on genital segments. Posterior rims of tergites pale.

Male genitalia. Epandrial black spot square. Clasper small, delicate, with curved tip (Fig. 7G). Aedeagus sac-like, containing very delicate structures (Fig. 7H). Hypandrium with 3 processes, the central one longer than others (Fig. 7K).

Holotype. O’, Panama: Barro Colorado Island, i.1983, light-trap (BMNH).

Poecilominettia flavescens sp. n.

Yellow fly. Body length 3.75 mm.

brownish stripes, the central one reaching as far as scutellum. Acrosticals in 8 rows. Scutellum with 2 spots. Prescutellaras reaching almost to apex of scutellum. All bristles strong. Scutellum slightly paler. Wings faintly yellowed, veins yellow, cross-veins slightly darkened. Halteres yellow. Legs yellow, femora strong yellow. Femur 1 with 6 bristles on row curving from postero-dorsally at base to dorsally at apex, 6 posterially and 6 long bristles postero-ventrally; femur 2 with 6 short sturdy spines antero-ventrally and 1 posterior bristle at apex; femur 3 with 3 long proclinate hairs antero-ventrally at apex. Abdomen without central marks on tergites. Posterior rims orange-yellow. Segments with anterior half bristleless, posterior half very regularly bristled.

Male genitalia. Epandrial black spot squarish. Clasper as in Fig. 10B. Hypandrium (Fig. 8I) with 3 processes, the central one short, the outer pair with 2 bristles on outer face. Aedeagus small, blunt at tip and containing non-sclerotised rods.

Holotype. C*, Panama: Barro Colorado Island, x.1982, light-trap (BMNH).

Paratypes. Panama: 1 C*, same data as holotype; 1 C*, Gatun, canopy fogging; 1 C*, Panama City, end of the Panama Canal, vii.1979, canopy fogging (BMNH).

Poecilominettia foliacea sp. n.

Yellow fly. Body length 3.25 mm

Head yellow, not shining. Fronto-facial angle obtuse. Face profile flat. Ocellar plate yellow. No marks on face or frons. Palps yellow. Labellum heart-shaped with 10 pseudo-tracheal canals on each half. Eyes green. Antennal segments all yellow, 3rd segment slightly oval. Arista with hairs short. Thorax orange-yellow without stripes. Acrosticals in 6–8 irregular rows. Two spots at apex of scutellum continued underneath. Prescutellars reaching beyond half-way to tip of scutellum. Wings slightly darkened with cross-veins very dark. Halteres yellow. Legs yellow; femur 1 with 8 bristles on row curving from postero-dorsally at base to dorsally at apex, 4 bristles posteriorly, 5 long bristles postero-ventrally; femur 2 with 6 short stout spines antero-ventrally and 1 posterior bristle at apex; femur 3 with 4 proclinate hairs antero-ventrally. Abdomen paler than thorax, dingy yellow. No marks on tergites except one faint central line on pregenital segment. Posterior rims of segments pale. Anterior half of each tergite without bristles, posterior half with bristles.

Male genitalia. Epandrium with almost square black spot. Clasper delicate, fanning out from base, with distal edges curled over (Fig. 11D). Hypandrium with 2 processes bearing 2 spines (Fig. 11C). Aedeagus curved, slightly pointed, containing very delicate rods.

Holotype. C*, Panama: Barro Colorado Island, x.1982, light-trap (BMNH).

Paratypes. 2 C*, same data but ix.1982, iii.1983 (BMNH).

Poecilominettia foliacea sp. n.

Small orange-yellow fly. Body length 3.5 mm.

Head orange-yellow with fronto-facial angle very obtuse. Face profile convex. No marks on face, labrum or cheek. Eyes red. Palps yellow. Labellum slightly elongated, with 10 pseudo-tracheal canals on each side. Antennal segments all yellow. Aristal hairs short. Thorax orange-yellow with one central paler stripe. Halteres yellow. Acrosticals in 8 rows. Prescutellar bristles reaching almost to apex of scutellum. Scutellum with two black spots continued underneath. Wings faintly smoky with veins yellow and cross-veins slightly darkened. Legs paler yellow. Femur 1 with 6 bristles on row curving from postero-dorsally at base to dorsally at apex. 7 irregular bristles posteriorly, and 7 long slender bristles postero-ventrally; femur 2 with 4 fairly long spines on row curving from anteriorly to antero-ventrally, and 1 posterior bristle at apex; femur 3 with 7 proclinate hairs on apical half antero-ventrally. Abdomen considerably paler. Banding effect produced dorsally by clear-cut division of tergites into anterior paler half which is bristle-less, and posterior half which bears bristles.

Male genitalia. Epandrial black spot approximately square. Clasper lying in one plane, without sclerotisation at tip (Fig. 12A). Hypandrium with three processes, central one 3 times longer than outer pair (Fig. 12C). Aedeagus broad, blunt at tip and containing delicate non-sclerotised rods with backwardly pointing curved hooks.

Holotype. C*, Panama: Barro Colorado Island, xi.1982, light-trap (BMNH).

Paratypes. 5 C*, same data but xii.1982, i-iii.1983 (BMNH).

Poecilominettia fornicata sp. n.

Orange-yellow fly. Body length 4.75 mm.

Head orange-yellow, not shining except ocellar and orbital plates. Brown marks on labrum at mouth edge and below eye. Anterior border of frons darkened. Ocellar plate darkened. All antennal segments yellow, segment 3 slightly
elongated (about twice as long as wide). Palps yellow. Labellum heart-shaped, with 11 pseudotracheal canals on each half. Thorax bright orange-yellow without stripes. Acrosticals in 8 rows. Prescutellar bristles reaching almost to tip of scutellum. Scutellum not paler, with black apical spots mainly on dorsal surface. All bristles strong. Halteres yellow. Wings smoky yellow with cross-veins strongly darkened. Legs yellow. Femur 1 with 8 bristles on row curved from postero-dorsally at base to dorsally at apex, 7 unusually long bristles posteriorly, and 4 long bristles postero-ventrally; femur 2 with 4 sturdy spines antero-ventrally and 1 posterior bristle at apex; femur 3 with the proclinate hairs present for entire length antero-ventrally. Abdomen slightly paler than thorax. Central marks on 2 pregenital segments. Rims of tergites not darkened posteriorly, but banded appearance evident with anterior third of tergites bristleless and remainder bristled. Ventrally paler with sternites yellow and well bristled.

Male genitalia. Epa ndrial black spot octagonal. Clasper domed (Fig. 7C) with sclerotised tooth half way down. Hypandrium with 2 fairly long processes directed sideways. Aedeagus rounded at tip and containing rods (Fig. 7F).

Paratype. 1 ♀, same data (BMNH).

Poecilominettia fortunae sp. n.
Small yellow fly. Body length 2.25 mm.

Head yellow with square black spot on face at mouth rim. Face profile flat (Fig. 1A). Fronto-facial angle obtuse. Labrum projecting slightly. Antenna entirely yellow with segment 3 slightly oval. Aripal hairs short. Palps yellow. Ocellar plate dark yellow. Labellum slightly elongated. Pse uo- tracheal canals reduced in number, not counted. Thorax more orange-yellow without stripes. Acrosticals in 6 rows. Prescutellars reaching half-way to apex of scutellum. No marks on scutellum. Wings yellowish without markings, veins light yellow. Halteres pale yellow. Legs very pale yellow; femur 1 with 6 long strong bristles on row curving from postero-dorsally at base to dorsally at apex, 5 smaller bristles posteriorly and 4 strong antero-ventrally; femur 2 with 4 short spines anteriorly towards apex and 1 posterior bristle apically; femur 3 with 5 graduated hairs apically antero-ventrally. Abdomen paler yellow with distinct black posterior bands on tergites, and single central black spots on segments 4, 5 and 6 progressively darker. Abdominal bristles delicate.

Male not known.

Holotype. ♀, Panama: Fortuna, iii.1977, light-trap (BMNH).

Poecilominettia fungivora sp. n.
Yellow fly with striped thorax. Body length 4.5 mm.

Head yellow with face profile slightly convex in centre. Fronto-facial angle obtuse. Square black spot on face, dark mark at mouth rim and also below eye on cheek. Frons with thin dark line. Ocellar plate dark. Palps yellow. Antennal segment 1 yellow, 2 black, 3 yellow. Hairing on arista long. Thorax yellow with 4 dark stripes — inner pair black as far as suture, then fading, outer pair
fading less than half-way to suture apex. Prescutellars reaching to scutellar apex. All thoracic bristles strong. Wings clear light yellow, crossveins dark. The 2 scutellar black spots large. Acrosticals in 8 irregular rows. Legs pale yellow. Femur 1 with 5 bristles posteriorly, 7 in row curving from postero-dorsally at base to dorsally at apex and 5 long bristles postero-ventrally; femur 2 with 1 strong bristle at apex, 5 sturdy spines antero-ventrally and 1 posterior bristle at apex; femur 3 with row of procline hair-like bristles antero-ventrally at apex. Dark mark antero-ventrally at base of tibia 3. Abdomen lighter in colour with no marks except centrally on last 3 tergites. Posterior rims of tergites pale. Sternites pale with sparse hairing.

Male genitalia (Fig. 3D). Epandrial black spot elongate and narrow anteriorly. Hypandrium with 2 hook-tipped processes, clasper small (Fig. 3Db). Aedeagus broad at tip and containing large sclerotised rods (Fig. 3Da).

Female similar to male.

Holotypes. ♂, Panama: Barro Colorado Island, x.1982, light-trap (BMNH).

Paratypes. 2♀, same data but ii.1983.

Poecilominettia gatuna sp. n.

Small yellow fly. Body length 2.5 mm.

Male genitalia. Epandrial black spot square. Clasper small, oval, with projecting tooth (Fig. 13C). Hypandrium damaged, but apparently similar to that of *M. sentosa*, only without the 2 central processes (Fig. 6Cc). Aedeagus containing long sclerotised toothed rods (Fig. 13B).

Holotype. ♂, Panama: Gatun end of the Panama Canal, vii.1979, fogging high canopy (BMNH).

Poecilominettia lagenata sp. n.

Yellow fly. Body length 3.75 mm.

Head yellow, not shining except occellar and orbital plates. No marks apart from brownish patch below eye and darkened rim of labrum. Fronto-facial angle obtuse. Antennal segments all yellow. Aristal hairs short. Palps yellow. Eyes greenish. Labellum slightly elongate heart-shaped, fairly large with 10 pseudo-tracheal canals on each half. Thorax orange-yellow, unstriped. Acrosticals in 8 rows. Prescutellars reaching more than half-way to apex of scutellum. Scutellum pale with two black spots at apex mainly underneath. Halteres yellow. Wings faintly smoky, veins yellow, crossveins not marked. Legs yellow; femur 1 with 8 bristles on row curved from postero-dorsally at base to dorsally at apex. 6 bristles posteriorly and 5 long bristles postero-ventrally; femur 2 with 5 sturdy irregular short spines anteriorly and 1 posterior bristle at apex; femur 3 with 7 procline hairs antero-ventrally. All bristles strong. Abdomen yellow, slightly and progressively darker towards tip. Tergites with fine darkened posterior bands. Ring sclerite narrow, complete.

Male genitalia. Epandrial black spot narrow anteriorly, swelling out behind. Clasper broad without protuberances or spines (Fig. 10D). Hypandrium with 2 notched processes and indentation between (Fig. 10Da). Aedeagus broad, containing several sclerotised rods (similar to Fig. 9Ga).

Holotype. ♂, Panama: Barro Colorado Island, ii.1983, light-trap (BMNH).

Paratypes. 2♂, same data.
or marked. Anterior half of each tergite bristle-less, posterior half with bristles, giving a banded appearance.

Male genitalia. Epandrial black spot approximately square. Clasper short, strong, with broad sclerotised border (Fig. 6Ab). Hypandrium with two delicate processes. Aedeagus forming a loose sac containing rods (Fig. 6Ac).

Holotype. O', **Panama:** Barro Colorado Island, x.1982, light-trap (BMNH).

Paratypes. 90O, same data but x.-xi.1982, i., ii.1983 (BMNH).

Material excluded from type series. **Panama:** Barro Colorado Island, vii., xii.1983, light-trap (BMNH).

Poecilominettia lineolata sp. n.

Small yellow fly. Body length 3.5 mm.

Head yellow with no marks on face. Central brown mark on labrum. Ocellar plate darkened. Face profile slightly convex. Frons with central yellow line and darker line on either side. Palps yellow. Antenna all yellow with aristal hairs short. Labellum with pseudo-tracheal canals not counted. Thorax yellow with 4 brownish stripes not reaching beyond second dorso-central bristle. Acrosticals in 8 irregular rows. No spots on scutellum. Prescutellars short, reaching half-way to scutellum apex. All bristles strong. Wings faintly yellowish. Halteres very pale. Legs very pale; femur 1 with 6–7 bristles on row curving from postero-dorsally at base to dorsally at apex, 7 posteriorly, 4 long bristles postero-ventrally; femur 2 with 4 short spines antero-ventrally and 1 posterior bristle at apex; femur 3 with row of procline hairs apically postero-ventrally. Abdomen paler than thorax, without markings.

Male genitalia not darkly sclerotised (Fig. 5C). Epandrial black spot rectangular (Fig. 5Ca). Clasper curved, sturdy (Fig. 5Cb). Hypandrium with 2 delicate processes well separated. Aedeagus broad and flat at tip and containing 1 large spine and rows of minute spines (Fig. 5Cc).

Holotype. O', **Panama:** Fortuna, iii.1979, light-trap (BMNH).

Poecilominettia maniculata sp. n.

Yellow fly. Body length 3.75 mm.

Male genitalia. Epandrial black spot roughly square with rounded anterior edge. Clasper curved with sclerotised edge, giving a somewhat mitten-like appearance (Fig. 8A). Group of spines at base (Fig. 8Aa). Aedeagus blunt at tip and containing long sclerotised rods. Hypandrium with 2 projections (Fig. 8J).

Holotype. O', **Panama:** Barro Colorado Island, ii.1983, light-trap (BMNH).

Paratypes. 30O, same data but xii.1982, ii., iii.1983 (BMNH).

Poecilominettia membranosa sp. n.

Small yellow fly with black stripes. Body length 2.25 mm.

Head yellow with face profile flat. Fronto-facial angle obtuse. Rectangular black spot on face and dark central line on frons. Ocellar plate dark. Antennal segments 1, 2 black, 3 yellow, slightly longish oval with medium long hairs on arista. Palps black. Labellum with 6 wide pseudo-tracheal canals on each half. Thorax with 4 black stripes, the inner pair faint between suture and scutellum, the outer pair continuing as a border to mesothorax. 2 black stripes diagonally across pleurae. Scutellum with 2 black spots at apex continued below. Scutellum slightly pointed between the 2 black spots. Wings yellowish, veins yellow. Acrosticals in 4 irregular rows. Prescutellars reaching half-way to apex of scutellum. Legs pale yellow; femur 1 with 5 bristles ventrally, 3 shorter posteriorly and 6 postero-dorsally; femur 2 with 4 short stout spines antero-ventrally and 1 posterior bristle apically; femur 3 with graduated row apically of 4 hairs antero-ventrally. Dark spot basally on tibia 3. Abdomen yellow with 3 black marks on each tergite except the first two, composed of a central line flanked by a triangular mark pointing laterally. Paler ventrally with very distinct spots laterally on sternites.

Male genitalia (Fig. 2B). Epandrial black spot
Poecilominettia nigriapica sp. n.

Yellow fly with marked wings. Body length 4.5 mm.

Head yellow with labrum edge projecting. Face profile flat, without markings. Fronto-facial angle obtuse. Frons with a pair of brown lines, one on either side of central yellow stripe. Eyes light red. All antennal segments yellow. Aristal hairs short. Palps yellow. Pseudo-tracheal canals of labellum not counted. Thorax orange-yellow on dorsum, paler laterally. No stripes and no marks on scutellum. Acrosticals in 8 rows. Prescutellars damaged. Halteres yellow. Wings dark yellow with cross-veins clouded, broad dark mark on distal third of wing over vein 2 which is continuous with darkened wing tip. Legs yellow. Femur 1 with 6 bristles on row curving from postero-dorsally at base to dorsally at apex, 2 posteriorly and 4 postero-ventrally; femur 2 with 5 strong bristles antero-ventrally and 1 posterior bristle at apex; femur 3 with no distinct procline hairs antero-ventrally, black-tipped distally. Abdomen yellow with distinct central line dorsally. Paler ventrally with sternites yellow. Ring sclerite dark.

Male genitalia. Epandrial black spot triangular but not strongly blackened. Clasper small, heavily sclerotised (Fig. 5Bc). Hypandrium with 2 long curved processes (Fig. 5Ba). Aedeagus pointed at tip, with small spines inside (Fig. 5Bb).

Poecilominettia obtusa sp. n.

Orange-yellow fly. Body length 4.25 mm.

Head orange-yellow. Face unmarked, profile flat, but hollowed out on either side of mid line. Fronto-facial angle very obtuse. Frons with central yellow line and pair of dark lines. Ocellar plate slightly darkened. Eyes bright red. Antenna all yellow. 3rd segment slightly elongated (twice as long as broad). Aristal hairs short. Labellum with reduced number of pseudo-tracheal canals not counted. Thorax orange-yellow with 3 faint narrow stripes. Acrosticals in 8 irregular rows. Sternites darker. Scutellum finely bordered black, without spots at apex. Prescutellars missing in holotype. Wings brownish yellow with darker band along costa almost as deep as level of vein 3. All bristles strong. Legs yellow, femora orange-yellow; femur 1 with 7 bristles posteriorly, 9 on row curving from postero-dorsally at base to dorsally at apex and 6 postero-ventrally; femur 2 with 5 short sturdy spines towards apex and 1 posterior bristle apically; femur 3 with 6 hairs antero-ventrally. Abdomen with darkened posterior borders on tergites, ventrally pale, sternites without marks on borders. Ring sclerite brown, incomplete.

Male genitalia (Fig. 1D). Epandrial black spot elongate, approximately triangular. Clasper with small hooked tip (Fig. 1Dd). Aedeagus curved,
Poecilocominetta papillata sp. n.

Small yellow fly. Body length 2.8 mm.

Head yellow, not shining. Face profile flat. Fronto-facial angle obtuse. No mark on face except for dull brown area below eye. Ocellar plate yellow. Palps pale yellow, labellum heart-shaped, with 8 pseudo-tracheal canals on each half. All antennal segments yellow, 3rd segment slightly elongate oval. Aristal hairs short. Thorax more orange-yellow, unstriped. Acrosticals in 6–8 irregular rows. Scutellum with 2 black spots at apex. Prescutellars reaching almost to tip of scutellum. Wings yellowish with veins yellow, cross-veins slightly darkened. Halteres pale yellow. Legs yellow; femur 1 with 4 long bristles postero-ventrally, 4 posteriorly and 6 postero-dorsally; femur 2 with short stout spines antero-ventrally and 1 posterior bristle at apex; femur 3 with 4 procline hairs apically antero-ventrally. Abdomen paler than thorax. Tergites with distinct dark posterior borders. Tergites with anterior half without bristles, posterior half with bristles, giving a banded effect. Ventral surface pale, sternites yellow. All bristles strong.

Male genitalia. Epandrial black spot approximately square. Clasper sturdy, blunt (Fig. 111) with spines at base (Fig. 111a). Hypandrium with 2 processes which hang downwards (Fig. 111b). Aedeagus elongated with column of small spines inside (Fig. 111a).

Holotype. ♂, Panama: Fortuna, i.1976, light-trap (BMNH).

Poecilocominetta parouatia sp. n.

Yellow fly. Body length 4 mm.

Head yellow, not shining except ocellar and orbital plates. No markings except brownish spot below eye. All antennal segments yellow. Aristal hairs short. Palps yellow. Labellum slightly elongated heart-shaped with 10 pseudo-tracheal canals on each side. Face profile slightly convex. Eyes green. Thorax orange-yellow, unstriped. Acrosticals in 8–10 irregular rows. Prescutellar bristles reaching almost to apex of scutellum. Scutellum paler, especially at tip which is flat between apical bristles. The 2 black spots at scutellum apex mainly beneath. Halteres yellow. Wings smoky with distinct oval clouds over cross-veins which are darkened. Other veins yellow. Legs yellow, femora more orange-yellow; femur 1 with 10 bristles on row curving from postero-dorsally at base to dorsally at apex, 6 smaller and somewhat irregular bristles posteriorly, 6 long bristles on postero-ventral row; femur 2 with 6 sturdy short spines antero-ventrally and 1 posterior bristle at apex; femur 3 with 4 procline hairs apically antero-ventrally. All bristles quite strong. Abdomen same colour as thorax, without markings. Posterior borders of tergites not darkened.

Male genitalia. Epandrial black spot square. Clasper pointed with sclerotised tip and protuberance at base with spines (Fig. 9d). Hypandrium with 2 processes with spine on outer face (Fig. 9f). Aedeagus delicate, almost bottle-shaped, no rods or spines within (Fig. 9fa).

Paratypes. 8♂, same data but xii.1982, i., ii.1983 (BMNH).
Poecilominettia pedata sp. n.

Yellow fly. Body length 4.5 mm.

Head yellow, not shining except ocellar and orbital plates. Fronto-facial angle very obtuse. Facial profile flat. Eyes red shot green. Antennal segments all yellow. Aristal hairs short. No marks except brown patch below eye and darkened rim of labrum at mouth edge. Palps yellow. Labellum heart-shaped with 10 pseudo-tracheal canals on each half. Thorax yellow without stripes. Acrosticals in 8 rows. Prescutellar bristles reaching as far as apex of scutellum. Scutellum same colour as thorax except at tip which is paler and pointed between bristles. The 2 black spots at apex of scutellum mainly beneath and continuous with fine lateral black borders. Halteres yellow. Wings light yellowish smoky, darker along costa. Crossveins slightly clouded, clearly marked. Legs yellow; femur 1 with 7 bristles on row curved from postero-dorsally at base to dorsally at apex. 6 bristles posteriorly and 7 long bristles postero-ventrally; femur 2 with 6 short stout spines anteriorly and 1 posterior bristle apically; femur 3 with 5 long, strong, hair-like proclinate bristles antero-ventrally. Abdomen yellow without any central marks. Posterior segments with darkened posterior borders. Ventrally paler with sternites yellow and well bristled.

Male genitalia. Epandrial black spot square. Clasper rounded with a sclerotised tooth (Fig. 7B). Hypandrium with 2 long dangling processes (Fig. 7Ad). Aedeagus very characteristically foot-shaped (Fig. 7Ac), when everted producing sac containing a curved column of small spines (Fig. 7D).

Holotype. ♂, **Panama**: Barro Colorado Island, i.1983, light-trap (BMNH).

Paratypes. 5♂, same data but ii., iii.1983 (BMNH).

Material excluded from type series. Same locality, x-xii.1982, i.-iii., v.1983 (BMNH).

Poecilominettia plicata sp. n.

Yellow fly. Body length 4 mm.

Head yellow, not shining except orbital and ocellar plates. Fronto-facial angle obtuse. No marks except dark mark below eye on cheek and rim of labrum. Palps yellow. Labellum slightly pointed, heart-shaped with 10 pseudo-tracheal canals on each side. Antennal segments all yellow. Aristal hairs short. Thorax orange-yellow with 3 thin faint narrow stripes. Acrosticals in 10 rows. Prescutellar bristles reaching to just over half-way to apex of scutellum. Scutellum not paler, with 2 black spots at tip continued beneath. Wings slightly smoky, veins yellow with cross-veins darkened. Halteres pale yellow. Legs yellow with femora more orange-yellow; femur 1 with 7 long bristles on row curving from postero-dorsally at base to dorsally at apex. 3 small bristles posteriorly, 5 long bristles antero-ventrally; femur 2 with 6 short sturdy spines antero-ventrally and 1 posterior bristle at apex; femur 3 with 5 long proximate hairs apically antero-ventrally. Abdomen almost the same colour as thorax. Dorsally no central marks but tergites with distinct dark bands posteriorly. Yellow ventrally.

Male genitalia. Epandrial black spot square. Clasper curved with pointed tip, flange basally (Fig. 11E) and small protuberance with spines at base (Fig. 11Ea). Hypandrium almost flat anteriorly with 3 small rounded processes (Fig. 8H). Aedeagus broad and blunt at tip and containing non-sclerotised straight rods with pointed extremities.

Holotype. ♂, **Panama**: Barro Colorado Island, iii.1983, light-trap (BMNH).

Paratypes. 6♂, same data but xii.1982, i., iii., iv.1983 (BMNH).

Poecilominettia pygmaea sp. n.

Small yellow fly. Body length 2.5 mm.

Head yellow with central black spot on face. Face profile flat. Fronto-facial angle obtuse. Palps yellow. Labellum heart-shaped with 8 pseudo-tracheal canals on each half. Eyes red shot green. Antennae all yellow. Aristal hairs short. Thorax orange-yellow. Acrosticals in 6 rows. Prescutellar bristles reaching less than half-way to apex of scutellum. No marks on scutellum. Wings faintly yellowish, veins yellow. Legs pale yellow. Femur 1 with 5 bristles on row curved postero-dorsally at base to dorsally at apex. 4 long bristles postero-ventrally and 5 small bristles posteriorly; femur 2 with 3 fairly strong bristles antero-ventrally and 1 posterior bristle at apex; femur 3 with 6 proximate hairs at apex antero-ventrally. Abdomen paler than thorax. No marks except on genital segments. Ventrally very pale.

Male genitalia (Fig. 6B). Epandrial black spot chevron-shaped. Clasper lobe-like without sclerotised tooth (Fig. 6Ba). Hypandrium with two processes (Fig. 6Bb). Aedeagus containing very strongly sclerotised sturdy spines (Fig. 6Bc).

Holotype. ♂, **Panama**: Barro Colorado Island, x.1982, light-trap (BMNH).

Paratypes. 2♂, same data but x., xi.1982 (BMNH).
Poecilominettia quadriprojecta sp. n.

Yellow fly. Body length 3.75 mm.

Head yellow, not shining except ocellar and orbital plates. Fronto-facial angle obtuse. No marks except brownish mark below eye on cheek and darkened rim of labrum. Face profile flat. Eyes green. Palps yellow. Labellum heart-shaped with 9 pseudo-tracheal canals on each side. Antennal segments yellow. Aristal hairs short. Thorax orange-yellow, no stripes. Acrosticals in 8 rows. Prescutellar bristles reaching to apex of scutellum. Scutellum not paler, with the two black spots mainly beneath. Halteres yellow. Wings slightly yellow, veins yellow, cross-veins barely marked. Legs yellow; femur 1 with 6 bristles on row postero-dorsally at base curving to dorsally at apex, 6 short bristles posteriorly and 4 long bristles antero-ventrally; femur 2 with 6 short stout spines antero-ventrally and 1 posterior bristle apically; femur 3 with 4 procline hairs apically antero-ventrally. Abdomen uniformly orange-yellow with central marks dorsally on last 2 segments.

Male genitalia. Epandrium with black spot roughly triangular. Clasper sturdy, with blunt tip (Fig. 8D). Hypandrium with 4 processes (Fig. 8G). Aedeagus rounded at tip and containing sclerotised spined rods (Fig. 8E).

Paratypes. 4♂, same data but ii., iii.1983 (BMNH).

Poecilominettia remata sp. n.

Orange-yellow fly. Body length 4 mm. All bristles strong.

Male genitalia very distinctive (Fig. 8M). Epandrial black spot triangular. Clasper very large, blade-like (Fig. 8Mc). Hypandrium with 2 long processes which hang down (Fig. 8Md). Aedeagus delicate, rounded, containing small spines (Fig. 8Mb).

Paratypes. 9♂, same data but x., xi.1982, i.-iv.1983 (BMNH).

Poecilominettia semilunata sp. n.

Yellow fly. Body length 3.5 mm.

Head yellow. Face profile flat. Fronto-facial angle obtuse. Face with dark mouth rim. No mark on frons. Ocellar plate yellow. Palps yellow. Number of pseudo-tracheal canals on labellum not counted. All antennal segments yellow. Aristal hairs short. Thorax not striped. Acrosticals in 8 rows. Scutellum with 2 black spots continued beneath. Wings faintly yellow with cross-veins only slightly darker. Halteres yellow. Prescutellars reaching almost to tip of scutellum. Scutellum pale. Legs yellow; femur 1 with 6 bristles on row curving from postero-dorsally at base to dorsally at apex, 5 posteriorly, 6 long bristles postero-ventrally; femur 2 with 5 sturdy spines irregularly antero-ventrally, 1 posterior bristle at apex; femur 3 with 5 procline hairs antero-ventrally. Abdomen paler yellow than thorax with dark posterior bands on tergites. Ring sclerite very thin, with deep central curve ventrally (Fig. 13Ge).

Male genitalia. No sclerotisation, very delicate. Epandrium with half-moon-shaped black spot. Clasper (Fig. 13Gb) small, narrow, delicate, without sclerotisation. Hypandrium with 2 processes short with curved points (Fig. 7L). Aedeagus larger than clasper, projecting, almost canoeshaped with upper border outlined dark (Fig. 13Gc).

Poecilominettia sentosa sp. n.

Small yellow fly. Body length 2.25 mm.

Head yellow with central black spot on face. Face and frons dull, ocellar and orbital plates shining. Face profile slightly concave. Fronto-facial angle obtuse. Palps yellow. Labellum heart-shaped with
8 pseudo-tracheal canals on each half. Eyes green. Antenna all yellow with 3rd segment slightly elongate oval. Arostral hairs short. Thorax orange-yellow. Acrosticals in 6 rows. Prescutellars reaching less than half-way to apex of scutellum. Scutellum without spots. All bristles strong. Wings slightly smoky, veins yellow. Legs pale yellow; femur 1 with 6 bristles on row curving from postero-dorsally at base to dorsally at apex, 4 bristles posteriorly and 4 long bristles postero-ventrally; femur 2 with 3 short bristles on anterior row and 1 posterior bristle at apex; femur 3 with row of 6 procline hairs antero-ventrally. Abdomen paler than thorax with no markings except on genital segments. Ventrally very pale. Male genitalia very distinctive. Epandrial black spot long oval. Clasper with sclerotised tooth basally. Hypandrium with 2 central processes and 2 outer, the latter bearing a pair of bristles. Aedeagus containing very sturdy, variously shaped spines (Fig. 6C).

Female with 1 black mark dorsally and 1 ventrally at tip of abdomen. Similar to male.

Paratypes. 7♂, 11♀, same data but xi.1982, i., iv.1983 (BMNH).

Material excluded from type series. Same data. x., xii.1982, iii.1983 (BMNH).

Poecilominettia sexiprojecta **sp. n.**

Yellow fly. Body length 4 mm.

Head yellow, not shining except ocellar and orbital plates. No marks except brownish patch below eye and darkened rim to mouth edge of labrum. Fronto-facial angle obtuse. Facial profile slightly convex. Eyes pale green. All antennal segments yellow. Arostral hairs short. Palps yellow. Labellum heart-shaped with 10 pseudo-tracheal canals on each side. Thorax orange-yellow, unstriped. Acrosticals in 8 rows. Prescutellar bristles reaching to apex of scutellum. Scutellum not paler, with 2 black spots at apex. Halteres yellow. Wings faintly yellow, veins yellow, cross-veins barely marked. Legs with femora strong yellow, rest pale; femur 1 with 7 bristles on row curving from postero-dorsally at base to dorsally at apex, 4 posteriorly and 7 long bristles postero-ventrally; femur 2 with 5 short sturdy spines anteriorly and 1 posterior bristle at apex; femur 3 with 5 procline hairs apically antero-ventrally. Abdomen yellow with banding effect due to anterior third of tergites paler and quite devoid of bristles and posterior section bristled. Posterior borders not darkened. Ventrally chalky-white with sparse hairing on sternites.

Male genitalia. Epandrial black spot roughly square. Clasper with sclerotised tip and group of spines at base (Fig. 11F). Hypandrium with 6 processes; central pair short, next pair longer, outer pair curved backwards (Fig. 11G). Aedeagus broad, rounded at tip and containing sclerotised rods.

Poecilominettia silbergliedi **sp. n.**

Yellow fly with dark stripes on thorax. Body length 3.75 mm.

Head yellow with face profile slightly convex. Dark mark at face rim and on cheek below eye. Eyes red. Frons with thin dark line centrally. Ocellar plate black. Palps yellow. Antennal segments all yellow. Arostral hairs long. Thorax without pleural stripes but with 4 dorsal stripes, inner pair fading after 2nd dorso-central bristle, outer pair fading before suture. Prescutellars reaching almost to apex of scutellum. Scutellar spots very large and even larger beneath. Acrosticals in 6 irregular rows. All bristles strong. Wings hyaline with only cross-veins slightly clouded, veins dark yellowish. Legs very pale, bristles black and strong. Femur 1 with 5 bristles on postero-ventral row, 3 apically posteriorly and 6 on row curving from postero-dorsally at base to dorsally at apex; femur 2 with 4 sturdy spines anteriorly, 1 posteriorly and 1 posterior bristle apically; femur 3 with row of 8 procline hairs antero-ventrally apically. Tibia 3 with dark mark basally. Abdomen pale yellow. No dark posterior borders on segments. Dark marks centrally on last 3 segments.

Male genitalia. Epandrial black spot roughly square. Clasper large, delicate, covered with tiny spines (Fig. 2F). Hypandrium with wavy anterior edge (Fig. 2G). Aedeagus flat-tipped, containing rods with curled hooks (Fig. 3B).

Poecilominettia silvicola **sp. n.**

Small yellow fly. Body length 2 mm.

Poecilominettia sp. n.

Deep yellow fly with black stripes. Body length 4 mm.

Head yellow with face profile slightly convex in centre. Fronto-facial angle obtuse. Black spot on face. Black central line on frons. Ocellar plate black. Eyes bright red. Antennal segments 1 and 2 black, 3rd yellow, slightly elongate oval with short hairs. Labellum somewhat elongated with 11 pseudo-tracheal canals on each half. Thorax with 4 black stripes fainter after last posterior dorsal-central bristle but strong again over scutellum. Two stripes on pleurae. Black spots at apex of scutellum. Prescutellars reaching just beyond half-way to scutellar apex. Acrosticals in 4 indeterminate rows. Wings yellowish. Veins yellow. Legs yellow; femur 1 with 5 bristles antero-ventrally, 5 posteriorly, 4 on row curving from postero-dorsally at base to dorsally at apex; femur 2 with 2 short spines anteriorly and 1 posterior bristle at apex; femur 3 with 1 bristle anteriorly and series of hairs apically antero-ventrally. Tíbia 3 with dark mark at base. Abdomen yellow with very dark, distinct banding posteriorly on tergites as well as central longitudinal line and laterally disposed triangular marks. Ventrally very dark borders on sternites. Ring sclerite black.

Male genitalia large. Epandrium with large, roughly square black spot. Clasper with crescent-shaped sclerotised edge equipped with hairs. Hypandrium with 2 processes pointing inwards. Aedeagus with very small teeth within sac (Fig. 1C).

Female similar to male but with 2 large darkened areas bearing spines at tip of abdomen ventrally.

Paratypes. 1 ♀, same data (BMNH).

Poecilominettia trigona sp. n.

Small yellow fly with black stripes. Body length 2.5 mm.

Head yellow with black square spot on face. Dark mark centrally on frons as wide as ocellar plate which is also dark. Antennal segments 1 and 2 black, 3 yellow, slightly elongate oval with aristal hairs of medium length. Palps black. Labellum with pseudo-tracheal canals not counted. Thorax with 4 stripes dorsally, inner pair reaching as far as apex of scutellum, outer pair continuing as a border to mesothorax. Two stripes on pleurae. Acrosticals in 4 rows. Prescutellars reaching half-way to apex of scutellum. Two spots on apex of scutellum continued beneath. Wings hyaline, veins yellowish. Legs pale yellow; femur 1 with 4 bristles ventrally, 6 bristles posteriorly and 6 antero-dorsally; femur 2 with 4 short sturdy spines antero-ventrally and 1 posterior bristle apically; femur 3 with series of 6 procline hairs towards apex antero-ventrally. Dark mark at base of tibia 3. Abdomen with longitudinal central stripe flanked by triangular marks whose apices point laterally, on each tergite. Ground colour of abdomen much paler than rest of body. Sternites ventrally very pale.

Male genitalia. Epandrial black spot roughly square. Clasper broad, delicate, bearing strap-like extension at tip (Fig. 2A). Hypandrium not produced into processes but with anterior edge wavy (Fig. 2C). Aedeagus broad with blunt delicate wavy tip and containing stout rods which bear large broad-based spines.

Female similar to male but with 2 black spots at tip of abdomen dorsally.

Paratype. 1 ♀, same data (BMNH).

Poecilominettia uncata sp. n.

Yellow fly. Body length 3.25 mm.

all yellow. Aristal hairs short. Labellum slightly pointed with pseudo-tracheal canals not counted. Thorax orange-yellow without stripes. Acrosticals in 8 rows. Prescutellar bristles reaching just over half-way to apex of scutellum. Two black spots at tip of scutellum mainly beneath. Halteres yellow. Wings yellowish, cross-veins not marked. Legs yellow; femur 1 with 6 bristles on row curving from postero-dorsally at base to dorsally at apex, 3 bristles posteriorly and 7 postero-ventrally; femur 2 with 4 short sturdy spines antero-ventrally and 1 posterior bristle at apex; femur 3 with 5 proclinate hairs antero-ventrally. Abdomen orange-yellow. Bristles irregular on tergites. Posterior borders of segments orange-yellow.

Male genitalia. Epandrial black spot roughly square. Clasper rounded, small, with sclerotised hooked tip (Fig. 9B). Hypandrium with 2 curved processes (Fig. 9Ab). Aedeagus large with blunt tip and containing sclerotised rods (Fig. 9Aa).

Holotype. σ°, **Panama**: Barro Colorado Island, i.1983, light-trap (BMNH).

Poecilominettia ungualata sp. n.

Dull yellow fly with grey dusting. Body length 4.5 mm.

Head with fronto-facial angle obtuse. Face with 2 spots connected by V-shaped mark and thin dark line around eye margin. Frons dull yellow, grey-dusted, with 2 dark lines running from antennal bases. Palps yellow. Labellum slightly elongated with 10 pseudo-tracheal canals on each half. Antennal segments all yellow with short hairs on arista. Ocellar plate almost round and dark. Thorax with 2 faint, incomplete brownish stripes on yellowish longitudinal central band. Acrosticals in 8–10 irregular rows. Scutellum without apical spots. Prescutellars extending to just over half-way to tip of scutellum. Thoracic segments outlined finely. Wings yellowish, more strongly so along costal region. Legs pale greyish yellow; femur 1 with 4 bristles antero-ventrally, 3 posteriorly and 6 postero-dorsally; femur 2 with 4 short stout spines antero-dorsally and 1 posterior bristle apically; femur 3 with 5 weak hairs apically antero-ventrally. Abdomen with broad dark posterior bands on tergites and central marks. Sternites pale with no marks. Ring sclerite incomplete (Fig. 12F).

Male genitalia. Epandrial black spot almost square. Clasper large, rounded at tip (Fig. 5F). Hypandrium with 2 processes. Aedeagus with short central spine.

Female similar to male.

Holotype. σ°, **Panama**: Fortuna, ii.1978, light-trap (BMNH).

Paratype. 1 φ, same data (BMNH).

Poecilominettia vibrata sp. n.

Orange-yellow fly. Body length 4.25 mm.

Head yellow with brownish marks below eye and on labrum. Fronto-facial angle obtuse. Frons and face not shining except orbital and ocellar plates. Palps very pale yellow. Labellum slightly elongated heart-shaped with 9 pseudo-tracheal large canals on each half. Antennal segments all yellow. Aristal hairs short. Eyes green. Thorax not striped. Acrosticals in 8 rows. Scutellum not paler than rest of thorax but with two black spots at apex. Prescutellar bristles reaching nearly to tip of scutellum. Wings yellowish, veins yellow, cross-veins with slight clouds. Halteres yellow. Legs orange-yellow; femur 1 with 8 strong bristles on row curving from postero-dorsally at base to dorsally at apex, 1 bristle posteriorly, 6 postero-ventrally; femur 2 with 6 long fine bristles antero-ventrally and 1 posterior bristle at apex; femur 3 with 4 proclinate hairs apically antero-ventrally. Apical bristles on tibia 2 very strong. Abdomen bright yellow without marks. Tergites clearly divided into anterior half without bristles and posterior half with bristles. Sternites bright yellow.

Male genitalia. Epandrial black spot roughly square. Clasper short, pointed, sclerotised (Fig. 8La). Hypandrium with 3 processes (Fig. 8K). Aedeagus elongated and when extended, the 2 spines project laterally (Fig. 8Lb).

Holotype. σ°, **Panama**: Barro Colorado Island, v.1983, light-trap (BMNH).

Paratypes. 5 φ, same data but iv.1983 (BMNH).

Poecilominettia virgea sp. n.

Small yellow fly with black stripes on thorax. Body length 2.5 mm.

Head yellow. Face profile slightly convex with square black spot. Mouth rim dark. Fronto-facial angle obtuse. Palps dark. Labellum with wide pseudo-tracheal canals not counted. Frons with dark central line. Ocellar plate dark. Antennal segments 1 and 2 black, 3 yellow with aristal hairs of medium length. Thorax with two stripes present over pleurae, 4 stripes on dorsum, outer pair extending as far as suture and fading, inner pair fainter and continuing thus as far as scutellum over which they are again dark, joining 2 scutellar spots at apex. Acrosticals in 6 rows. Prescutellars
reaching as far as half-way to scutellum tip. Wings clear pale yellowish with veins yellow. Legs pale yellow; femur 1 with 10 bristles on row curving from postero-dorsally at base to dorsally at apex, 5 posteriorly and 4 long bristles postero-ventrally; femur 2 with 3 bristles antero-ventrally and 1 posterior bristle at apex; femur 3 with 4 procline hairs antero-ventrally. Dark mark on tibia 3 basally. Abdomen with central longitudinal line flanked by large laterally disposed triangular marks on last 3 segments.

Male genitalia. Eparndrial black spot elongate rectangular. Clasper with long fine tip (Fig. 4Dc). Hypandrium with curved indentation anteriorly (Fig. 4Fa). Aedeagus containing long rods (Fig. 4Fc) and, at aedeagal base, 2 heavily sclerotised rods as long as aedeagus (Fig. 4Fb).

Holotype. O°, Panama: Miramar, xii.1979, light-trap (BMNH).

ACKNOWLEDGEMENTS. I am most grateful to Dr W. N. Mathis, National Museum of Natural History, Smithsonian Institution, Washington, D.C., who arranged for me to have a long-term loan of a large collection of Lauxaniidae, and to Dr R. Contreras-Lichtenberg, Naturhistorisches Museum, Vienna, who made it possible for me to examine the type specimen of *Poecilominettia grata* Wiedemann, and especially to Dr H. Wolda, Smithsonian Tropical Research Institute, Panama, for sending me a series of samples of flies taken at his light-traps on Barro Colorado Island, Fortuna and Miramar. I wish to express my thanks to three members of the University of Leeds: Dr Peter Evennett for taking the scanning electron micrographs, Mr Ken Rowe for assistance with the naming of the new species, and my husband, Dr Edward Broadhead for reading the manuscript. The publication of this paper has been made possible by a grant generously provided by the Natural Environment Research Council.

REFERENCES

Fig. 1 A, profile of head of *Poecilominettia fortunae* (♀); B, wing of *P. fumida*; C, D, tip of male abdomen of (C) *P. spinosa* (posterior view), a = epandrial black spot, b = aedeagus, c = clasper; (D) *P. obtusa* (lateral view), a = epandrial black spot, b = processes of hypandrium, c = aedeagus, d = clasper.
Fig. 2 A, B, clasper of (A) Poecilominettia trigona; (B) P. membranosa; C, D, hypandrium of (C) P. trigona; (D) P. membranosa; E, tip of abdomen of male P. picticornis (ventral view), a = clasper, b = aedeagus, c = hypandrium; F, clasper of male P. silbergliedii; G, hypandrium of P. silbergliedii, anterior margin.
Fig. 3 A, clasper of *Poecilominettia* zebroides; B, C, distal half of one aedeagal rod of (B) *P. silbergliedi*; (C) *P. zebroides*; D, tip of male abdomen of *P. fungivora*, a = aedeagus, b = clasper, c = processes of hypandrium, d = epandrial black spot; E, hypandrium of *P. fungivora*; F, lateral view of tip of male abdomen of *P. falcata*, a = aedeagus, b = clasper, c = epandrial black spot; G, hypandrium of male *P. falcata*.
Fig. 4 A-D, tip of male abdomen of (A) Poecilominettia epacra (ventral view), a = clasper, b = aedeagus, c = hypandrium; (B) P. cordata (ventral view), a = clasper, b = aedeagus, c = hypandrium; (C) P. cornuta (dorsal view), a = aedeagus extended, b = clasper, c = rods at aedeagus base, d = hypandrium; (D) P. virgea, a = epandrial black spot, b = aedeagus, c = clasper; E, ring sclerite of P. sexiprojecta; F, ventral view of aedeagus and rods of P. virgea, a = hypandrium, b = sclerotised rods, c = aedeagus.
Fig. 5 A-D, tip of male abdomen of (A) Homoeominettia woldae (lateral view), a = aedeagus, b = process of hypandrium, c = clasper; (B) Poecilominettia nigriapica (lateral view), a = process of hypandrium, b = aedeagus, c = clasper; (C) P. lineolata (ventral view), a = epandrial black spot, b = clasper, c = aedeagus; (D) P. circumtexta (lateral view), a = epandrial black spot, b = aedeagus, c = clasper; E, F, clasper of (E) P. circularis; (F) P. ungulata.
Fig. 6 A–F, tip of male abdomen of (A) Poecilominetia legnota (lateral view), a = epandrial black spot, b = clasper, c = aedeagus and rods; (B) P. pygmaea (ventral view), a = clasper, b = process of hypandrium, c = aedeagus and rods; (C) P. sentosa (ventral view), a = clasper, b = aedeagus and rods, c = hypandrium; (D) P. silvicola (ventral view), a = clasper, b = process of hypandrium, c = aedeagus, d = epandrial black spot; (E) P. enormis (ventral view), a = process of hypandrium, b = clasper, c = aedeagus; (F) P. enormis (dorsal view), a = epandrial black spot, b = process of hypandrium, c = aedeagus, d = clasper.
Fig. 7 A, tip of male abdomen of Poecilominettia pedata (lateral view), a = epandrial black spot, b = clasper, c = aedeagus, d = processes of hypandrium; B, C, clasper of (B) P. pedata; (C) P. fornicata; D, extended aedeagus of P. pedata; E, aedeagus and processes of hypandrium of P. pedata; F, aedeagus and hypandrium of P. fornicata; G, clasper of P. fimbriata; H, extended aedeagus of P. fimbriata; I, clasper of P. vibrata; J, aedeagus and processes of hypandrium of P. vibrata; K, processes of hypandrium of P. fimbriata; L, hypandrium of P. semilunata; M, tip of male abdomen of P. effossa, a = epandrial black spot, b = clasper, c = ring sclerite, d = aedeagus.
Fig. 8 A, clasper of Poecilominetta maniculata, a = group of spines; B, aedeagus of P. maniculata; C, P. notata (ventral view), a = clasper, b = aedeagus, c = hypandrium, d = spines; D, clasper of P. quadriprojecta; E, aedeagus of P. quadriprojecta; F, head of P. notata; G-K, hypandrium of (G) P. quadriprojecta; (H) P. plicata; (I) P. flavescens; (J) P. maniculata; (K) P. vibrata; L, M, tip of male abdomen of (L) P. vibrata, a = clasper, b = aedeagus; (M) P. remata, a = epandrial black spot, b = aedeagus, c = clasper, d = processes of hypandrium (lateral view).
Fig. 9 A. aedeagus and hypandrium of *Poecilominettia uncata*, a = aedeagus, b = hypandrial process; B-E, clasper of (B) *P. uncata*; (C) *P. calva*; (D) *P. pectinata*, a = protuberance and spines; (E) *P. curvata*; F, G, hypandrium and aedeagus of (F) *P. pectinata*, a = aedeagus, b = hypandrium; (G) *P. calva*, a = aedeagus, b = process of hypandrium; H, clasper of *P. erymna*; I, J, abdominal sternites of (I) *P. calva*; (J) *P. pectinata*; K, hypandrium of *P. curvata*.
Fig. 10 A, B, clasper of (A) Poecilominettia biprojecta, a = protuberance and spines; (B) P. flavescens; C, hypandrium of P. biprojecta; D, clasper and hypandrium of P. lagenata, a = hypandrium; E, hypandrium of P. flavescens; F, tip of male abdomen of P. chelata (posterior view), a = epandrial black spot, b = clasper, c = aedeagus; G-I, hypandrium of (G) P. chelata; (H) P. aurita; (I) P. erymna.
Fig. 11 A, clasper of Poecilominettia papillata, a = protuberance and spines; B, C, hypandrium of (B) P. papillata; (C) P. foliacea; D-F, clasper of (D) P. foliacea; (E) P. plicata, a = protuberance and spines; (F) P. sexiprojecta, a = spines; G, hypandrium of P. sexiprojecta; H, aedeagus and hypandrium of P. parouatia (lateral view), a = aedeagus, b = processes of hypandrium; I, clasper of P. parouatia, a = spines.
Fig. 12 A, B, clasper of (A) Poecilominettia folleata; (B) P. acuta; C, D, hypandrium of (C) P. folleata; (D) P. acuta; E, F, ring sclerite of (E) P. circularis; (F) P. unguilata.
Fig. 13 A, clasper and aedeagus of *Poecilominettia aurita*, a = clasper, b = aedeagus; B, aedeagus of *P. gatuna*; C, clasper of *P. gatuna*; D, labellum of *P. pectinata*, a = modified zone, b = pseudo-tracheal canals, c = beak; E, aedeagus and processes of hypandrium of *Floriminettia coronata*, a = aedeagus, b = process of hypandrium; F, clasper of *F. coronata*; G, tip of male abdomen of *Poecilominettia semilunata*, a = epandrial black spot, b = claspers, c = aedeagus, d = hypandrium, e = ring sclerite.
Fig. 14 A, head of *Poecilominettia effossa*, labellum fully extended; B, labellum enlarged to show structures on distal half.
Fig. 15 Labellum of *Poecilominettia effossa* in lateral view.
INDEX

Invalid names are in *italics*.

<table>
<thead>
<tr>
<th>acuta 193</th>
<th>approximata 188</th>
<th>assimilis 188</th>
<th>aurita 193</th>
</tr>
</thead>
<tbody>
<tr>
<td>biprojecta 194</td>
<td>brevipilumata 191</td>
<td>bruneicosta 188</td>
<td>calva 194</td>
</tr>
<tr>
<td>chelata 194</td>
<td>chilenesis 192</td>
<td>circularis 195</td>
<td>circumtexta 195</td>
</tr>
<tr>
<td>cordata 195</td>
<td>cornuta 196</td>
<td>coronata 189</td>
<td>curvata 196</td>
</tr>
<tr>
<td>Deutominettia 186</td>
<td>Drosophila 186</td>
<td>effossa 196</td>
<td>effossa group 192</td>
</tr>
<tr>
<td>enormis 197</td>
<td>epacra 197</td>
<td>erymna 197</td>
<td>falcata 198</td>
</tr>
<tr>
<td>ficulnea 189</td>
<td>fimbriata 198</td>
<td>flavescens 198</td>
<td>Floriminettia 189</td>
</tr>
<tr>
<td>foliacea 199</td>
<td>follicata 199</td>
<td>fornicatana 199</td>
<td>fortuna 200</td>
</tr>
<tr>
<td>fumida 200</td>
<td>fungivora 200</td>
<td>fuscinervis 188</td>
<td>gatuna 201</td>
</tr>
<tr>
<td>geniseta 188</td>
<td>grata 192</td>
<td>Homocominettia 190</td>
<td>lagenata 201</td>
</tr>
<tr>
<td>lincolata 202</td>
<td>maniculata 202</td>
<td>membranosa 202</td>
<td>Minettia 186</td>
</tr>
<tr>
<td>nemorosa 187</td>
<td>nigrigriposa 203</td>
<td>notata 203</td>
<td>obscura group 187</td>
</tr>
<tr>
<td>obtusa 203</td>
<td>octovittata 191</td>
<td>papillata 204</td>
<td>parouatia 204</td>
</tr>
<tr>
<td>pedata 205</td>
<td>picticornis 186</td>
<td>plicata 205</td>
<td>Pseudogriphoneura 185</td>
</tr>
<tr>
<td>pygmaea 205</td>
<td>quadrata 188</td>
<td>quadrprojecta 206</td>
<td>remata 206</td>
</tr>
<tr>
<td>rivosa 187</td>
<td>Sapromyza 185</td>
<td>semilunata 206</td>
<td>sentosa 206</td>
</tr>
<tr>
<td>sexiprojecta 207</td>
<td>sexisiriata 191</td>
<td>silbergledi 207</td>
<td>silvicola 207</td>
</tr>
<tr>
<td>spinosa 208</td>
<td>tinctinervis 188</td>
<td>trigona 208</td>
<td>uncata 208</td>
</tr>
<tr>
<td>ungulata 209</td>
<td>uniclor 192</td>
<td>valida 191</td>
<td>vibreta 209</td>
</tr>
<tr>
<td>virgea 209</td>
<td>woldae 190</td>
<td>Xenochaetina 185</td>
<td>zebroides 186</td>
</tr>
</tbody>
</table>
E. W. CLASSEY Ltd
P.O. Box 93
FARINGDON, OXON
SN7 7DR, ENGLAND

Natural History Publishers
Booksellers and Library Agents

Catalogues on request

Agents for the publications of the
BRITISH MUSEUM (NATURAL HISTORY)

Publishers of
ENTOMOLOGIST'S GAZETTE

An illustrated quarterly journal of
Palaearctic Entomology
Volume 41 commences January 1990
Current Annual Subscription (post free)
£16.00 (US $35.00)
CONTENTS

131 *Ficus*-feeding psyllids (Homoptera), with special reference to the Homotomidae.
 D. Hollis & P. S. Broomfield

185 The species of *Poecilominettia, Homoeominettia* and *Floriminettia* (Diptera: Lauxaniidae) in Panama.
 Elcy C. Broadhead